Прати
Thomas Kröger
Thomas Kröger
Researcher, TU Munich
Верификована је имејл адреса на tum.de
Наслов
Навело
Навело
Година
Quantifying the state of the art of electric powertrains in battery electric vehicles: Range, efficiency, and lifetime from component to system level of the Volkswagen ID. 3
N Wassiliadis, M Steinsträter, M Schreiber, P Rosner, L Nicoletti, ...
Etransportation 12, 100167, 2022
1032022
Identification and explanation of challenging conditions for camera-based object detection of automated vehicles
T Ponn, T Kröger, F Diermeyer
Sensors 20 (13), 3699, 2020
352020
Quantifying the state of the art of electric powertrains in battery electric vehicles: Comprehensive analysis of the tesla model 3 on the vehicle level
N Rosenberger, P Rosner, P Bilfinger, J Schöberl, O Teichert, J Schneider, ...
World Electr. Veh. J 15, 268, 2024
152024
Collaborative training of deep neural networks for the lithium-ion battery aging prediction with federated learning
T Kröger, A Belnarsch, P Bilfinger, W Ratzke, M Lienkamp
Etransportation 18, 100294, 2023
142023
Experimental analysis of lithium-ion cell procurement: Quality differences, correlations, and importance of cell characterization
M Ank, T Kröger, M Schreiber, M Lienkamp
Journal of Energy Storage 66, 107430, 2023
142023
Alarm flood analysis by hierarchical clustering of the probabilistic dependency between alarms
I Weiß, J Kinghorst, T Kröger, MF Pirehgalin, B Vogel-Heuser
2018 IEEE 16th International Conference on Industrial Informatics (INDIN …, 2018
82018
Performance Analysis of Camera-based Object Detection for Automated Vehicles.
T Ponn, T Kröger, F Diermeyer
Sensors (Basel, Switzerland) 20 (13), E3699-E3699, 2020
62020
Understanding lithium-ion battery degradation in vehicle applications: Insights from realistic and accelerated aging tests using Volkswagen ID. 3 pouch cells
M Schreiber, KA Gamra, P Bilfinger, O Teichert, J Schneider, T Kröger, ...
Journal of Energy Storage 112, 115357, 2025
42025
Increasing the efficiency of li-ion battery cycle life testing with a partial-machine learning based end of life prediction
T Kröger, A Bös, S Maisel, S Luciani, M Schreiber, M Lienkamp
Journal of Energy Storage 73, 108842, 2023
32023
Battery pack diagnostics for electric vehicles: Transfer of differential voltage and incremental capacity analysis from cell to vehicle level
P Bilfinger, P Rosner, M Schreiber, T Kröger, KA Gamra, M Ank, ...
eTransportation 22, 100356, 2024
22024
Investigating the aging mechanisms of state-of-the-art automotive battery pouch cells under real-world usage conditions
M Schreiber, N Wassiliadis, J Schneider, T Kröger, M Lienkamp
Unpublished, 2022
22022
Comparing experimental designs for parameterizing semi-empirical and deep learning-based lithium-ion battery aging models
T Kröger, S Maisel, G Jank, KA Gamra, T Brehler, M Lienkamp
Journal of Energy Storage 106, 114702, 2025
2025
Unlocking the full potential of electric vehicle fast-charging over lifetime through model-based aging adaptation
KA Gamra, P Bilfinger, M Schreiber, T Kröger, C Allgäuer, M Lienkamp
Journal of Energy Storage 99, 113361, 2024
2024
Incoming Inspection of Lithium‐Ion Batteries Based on Multi‐cell Testing
M Ank, M Rößle, T Kröger, A Sommer, M Lienkamp
Energy Technology, 2400494, 2024
2024
Reducing Li-ion Cycle Life Testing Costs with a Robust Hybrid Aging Predictor
T Kröger, MS Derbel, L Markus
EVS 37 International Electric Vehicle Symposium and Exhibition 1 EVS37 Symposium, 2024
2024
AI-Supervised Testing of Li-ion Battery Aging
T Kröger, D Jeong, S Maisel, M Lienkamp
AABC 2023-Advanced Automotive Battery Conference, 2023
2023
AI-supervised Testing of Li-ion Battery Aging: Improving Data Quality and Forecasting Aging Behavior
T Kröger, D Jeong, S Maisel, M Lienkamp
Reducing Li-ion Battery Cycle Life Testing Costs with a Robust Hybrid Aging Predictor
T Kröger, MS Derbel, M Lienkamp
Систем тренутно не може да изврши ову радњу. Пробајте поново касније.
Чланци 1–18