A comparison of classical and machine learning-based phenotype prediction methods on simulated data and three plant species M John, F Haselbeck, R Dass, C Malisi, P Ricca, C Dreischer, ... Frontiers in Plant Science 13, 932512, 2022 | 28 | 2022 |
Efficient permutation-based genome-wide association studies for normal and skewed phenotypic distributions M John, MJ Ankenbrand, C Artmann, JA Freudenthal, A Korte, DG Grimm Bioinformatics 38 (Supplement_2), ii5-ii12, 2022 | 19 | 2022 |
Superior protein thermophilicity prediction with protein language model embeddings F Haselbeck, M John, Y Zhang, J Pirnay, JP Fuenzalida-Werner, ... NAR Genomics and Bioinformatics 5 (4), lqad087, 2023 | 13 | 2023 |
The benefits of permutation-based genome-wide association studies M John, A Korte, DG Grimm Journal of Experimental Botany 75 (17), 5377-5389, 2024 | 3 | 2024 |
permGWAS2: enhanced and accelerated permutation-based genome-wide association studies M John, A Korte, DG Grimm bioRxiv, 2023.11. 28.569016, 2023 | 2 | 2023 |
Predicting gene regulatory interactions using natural genetic variation M John, D Grimm, A Korte Plant Gene Regulatory Networks: Methods and Protocols, 301-322, 2023 | 2 | 2023 |
Population-aware permutation-based significance thresholds for genome-wide association studies M John, A Korte, M Todesco, DG Grimm Bioinformatics Advances 4 (1), vbae168, 2024 | 1 | 2024 |
easyPheno: An easy-to-use and easy-to-extend Python framework for phenotype prediction using Bayesian optimization F Haselbeck, M John, DG Grimm Bioinformatics Advances 3 (1), vbad035, 2023 | 1 | 2023 |
Efficient permutation-based genome-wide association studies for normal and skewed phenotypic distributions (vol 38, pg ii5, 2022) M John, MJ Ankenbrand, C Artmann, JA Freudenthal, A Korte, DG Grimm BIOINFORMATICS 38 (22), 5149-5149, 2022 | | 2022 |