Прати
Maura John
Maura John
PhD Student at TUM Campus Straubing
Верификована је имејл адреса на tum.de
Наслов
Навело
Навело
Година
A comparison of classical and machine learning-based phenotype prediction methods on simulated data and three plant species
M John, F Haselbeck, R Dass, C Malisi, P Ricca, C Dreischer, ...
Frontiers in Plant Science 13, 932512, 2022
282022
Efficient permutation-based genome-wide association studies for normal and skewed phenotypic distributions
M John, MJ Ankenbrand, C Artmann, JA Freudenthal, A Korte, DG Grimm
Bioinformatics 38 (Supplement_2), ii5-ii12, 2022
192022
Superior protein thermophilicity prediction with protein language model embeddings
F Haselbeck, M John, Y Zhang, J Pirnay, JP Fuenzalida-Werner, ...
NAR Genomics and Bioinformatics 5 (4), lqad087, 2023
132023
The benefits of permutation-based genome-wide association studies
M John, A Korte, DG Grimm
Journal of Experimental Botany 75 (17), 5377-5389, 2024
32024
permGWAS2: enhanced and accelerated permutation-based genome-wide association studies
M John, A Korte, DG Grimm
bioRxiv, 2023.11. 28.569016, 2023
22023
Predicting gene regulatory interactions using natural genetic variation
M John, D Grimm, A Korte
Plant Gene Regulatory Networks: Methods and Protocols, 301-322, 2023
22023
Population-aware permutation-based significance thresholds for genome-wide association studies
M John, A Korte, M Todesco, DG Grimm
Bioinformatics Advances 4 (1), vbae168, 2024
12024
easyPheno: An easy-to-use and easy-to-extend Python framework for phenotype prediction using Bayesian optimization
F Haselbeck, M John, DG Grimm
Bioinformatics Advances 3 (1), vbad035, 2023
12023
Efficient permutation-based genome-wide association studies for normal and skewed phenotypic distributions (vol 38, pg ii5, 2022)
M John, MJ Ankenbrand, C Artmann, JA Freudenthal, A Korte, DG Grimm
BIOINFORMATICS 38 (22), 5149-5149, 2022
2022
Систем тренутно не може да изврши ову радњу. Пробајте поново касније.
Чланци 1–9