Прати
Juliane Mueller
Juliane Mueller
Верификована је имејл адреса на nrel.gov
Наслов
Навело
Навело
Година
SO-MI: A surrogate model algorithm for computationally expensive nonlinear mixed-integer black-box global optimization problems
J Müller, CA Shoemaker, R Piché
Computers & operations research 40 (5), 1383-1400, 2013
2382013
Influence of Ensemble Surrogate Models and Sampling Strategy on the Solution Quality of Algorithms for Computationally Expensive Black-Box Global Optimization Problems
J Müller, CA Shoemaker
Journal of Global Optimization 60 (2), 123-144, 2014
1802014
Classical optimizers for noisy intermediate-scale quantum devices
W Lavrijsen, A Tudor, J Müller, C Iancu, W De Jong
2020 IEEE international conference on quantum computing and engineering (QCE …, 2020
1432020
Mixture surrogate models based on Dempster-Shafer theory for global optimization problems
J Müller, R Piché
Journal of Global Optimization 51, 79-104, 2011
1242011
Surrogate optimization of deep neural networks for groundwater predictions
J Müller, J Park, R Sahu, C Varadharajan, B Arora, B Faybishenko, ...
Journal of Global Optimization 81, 203-231, 2021
932021
MISO: mixed-integer surrogate optimization framework
J Müller
Optimization and Engineering, 2015
912015
SOCEMO: surrogate optimization of computationally expensive multiobjective problems
J Müller
INFORMS Journal on Computing 29 (4), 581-596, 2017
832017
SO-I: A Surrogate Model Algorithm for Expensive Nonlinear Integer Programming Problems Including Global Optimization Applications
J Müller, CA Shoemaker, R Piche
Journal of Global Optimization 59 (4), 865-889, 2014
722014
Approximative solutions to the bicriterion vehicle routing problem with time windows
J Müller
European Journal of Operational Research 202 (1), 223-231, 2010
692010
MATSuMoTo: The MATLAB surrogate model toolbox for computationally expensive black-box global optimization problems
J Mueller
arXiv preprint arXiv:1404.4261, 2014
672014
Long-term missing value imputation for time series data using deep neural networks
J Park, J Müller, B Arora, B Faybishenko, G Pastorello, C Varadharajan, ...
Neural Computing and Applications 35 (12), 9071-9091, 2023
522023
Can machine learning accelerate process understanding and decision‐relevant predictions of river water quality?
C Varadharajan, AP Appling, B Arora, DS Christianson, VC Hendrix, ...
Hydrological Processes 36 (4), e14565, 2022
492022
Surrogate optimization of computationally expensive black-box problems with hidden constraints
J Müller, M Day
INFORMS Journal on Computing 31 (4), 689-702, 2019
462019
GOSAC: global optimization with surrogate approximation of constraints
J Müller, JD Woodbury
Journal of Global Optimization 69 (1), 117-136, 2017
422017
CH4 Parameter Estimation in CLM4.5bgc Using Surrogate Global Optimization
J Muller, R Paudel, CA Shoemaker, J Woodbury, Y Wang, N Mahowald
Geoscientific Model Development 8 (10), 3285-3310, 2015
422015
Impact of input feature selection on groundwater level prediction from a multi-layer perceptron neural network
RK Sahu, J Müller, J Park, C Varadharajan, B Arora, B Faybishenko, ...
Frontiers in Water 2, 573034, 2020
392020
2020 IEEE International Conference on Quantum Computing and Engineering (QCE)
W Lavrijsen, A Tudor, J Müller, C Iancu, W De Jong
IEEE, 2020
362020
Pushing the frontiers in climate modelling and analysis with machine learning
V Eyring, WD Collins, P Gentine, EA Barnes, M Barreiro, T Beucler, ...
Nature Climate Change 14 (9), 916-928, 2024
352024
User guide for modularized surrogate model toolbox
J Müller
Department of Mathematics, Tampere University of Technology, Tampere, Finland, 2012
282012
Apprentice for event generator tuning
M Krishnamoorthy, H Schulz, X Ju, W Wang, S Leyffer, Z Marshall, ...
EPJ Web of Conferences 251, 03060, 2021
262021
Систем тренутно не може да изврши ову радњу. Пробајте поново касније.
Чланци 1–20