Asynchronous online federated learning for edge devices with non-iid data Y Chen, Y Ning, M Slawski, H Rangwala 2020 IEEE International Conference on Big Data (Big Data), 15-24, 2020 | 529 | 2020 |
Learning dynamic context graphs for predicting social events S Deng, H Rangwala, Y Ning Proceedings of the 25th ACM SIGKDD international conference on knowledge …, 2019 | 127 | 2019 |
Cola-GNN: Cross-location attention based graph neural networks for long-term ILI prediction S Deng, S Wang, H Rangwala, L Wang, Y Ning Proceedings of the 29th ACM international conference on information …, 2020 | 122 | 2020 |
Dynamic knowledge graph based multi-event forecasting S Deng, H Rangwala, Y Ning Proceedings of the 26th ACM SIGKDD international conference on knowledge …, 2020 | 119 | 2020 |
Algorithmic fairness in computational medicine J Xu, Y Xiao, WH Wang, Y Ning, EA Shenkman, J Bian, F Wang eBioMedicine, Part of THE LANCET Discovery Science 84, 2022 | 106 | 2022 |
Modeling Precursors for Event Forecasting via Nested Multi-Instance Learning Y Ning, S Muthiah, H Rangwala, N Ramakrishnan Proceedings of the 22nd ACM SIGKDD Conference on Knowledge Discovery and …, 2016 | 76 | 2016 |
Collaborative graph learning with auxiliary text for temporal event prediction in healthcare C Lu, CK Reddy, P Chakraborty, S Kleinberg, Y Ning Proceedings of the Thirtieth International Joint Conference on Artificial …, 2021 | 68 | 2021 |
Empirical analysis of multi-task learning for reducing identity bias in toxic comment detection A Vaidya, F Mai, Y Ning Proceedings of the International AAAI Conference on Web and Social Media 14 …, 2020 | 63 | 2020 |
A multiple instance learning framework for identifying key sentences and detecting events W Wang, Y Ning, H Rangwala, N Ramakrishnan Proceedings of the 25th ACM International on Conference on Information and …, 2016 | 52 | 2016 |
Certified edge unlearning for graph neural networks K Wu, J Shen, Y Ning, T Wang, WH Wang Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and …, 2023 | 42 | 2023 |
Context-aware health event prediction via transition functions on dynamic disease graphs C Lu, T Han, Y Ning Proceedings of the AAAI Conference on Artificial Intelligence 36 (4), 4567-4574, 2022 | 38 | 2022 |
Federated multi-task learning with hierarchical attention for sensor data analytics Y Chen, Y Ning, Z Chai, H Rangwala 2020 International Joint Conference on Neural Networks (IJCNN), 1-8, 2020 | 32 | 2020 |
STAPLE: Spatio-Temporal Precursor Learning for Event Forecasting Y Ning, R Tao, CK Reddy, H Rangwala, JC Starz, N Ramakrishnan The 18th SIAM International Conference on Data Mining (SDM18), 2018 | 32 | 2018 |
Self-supervised graph learning with hyperbolic embedding for temporal health event prediction C Lu, CK Reddy, Y Ning IEEE Transactions on Cybernetics 53 (4), 2124-2136, 2021 | 31 | 2021 |
Graph message passing with cross-location attentions for long-term ili prediction S Deng, S Wang, H Rangwala, L Wang, Y Ning arXiv preprint arXiv:1912.10202, 2019 | 31 | 2019 |
A Gradient-based Adaptive Learning Framework for Efficient Personal Recommendation Y Ning, Y Shi, L Hong, H Rangwala, N Ramakrishnan Proceedings of the 11th ACM Conference on Recommender Systems (RecSys’17), 2017 | 28 | 2017 |
Multi-label clinical time-series generation via conditional GAN C Lu, CK Reddy, P Wang, D Nie, Y Ning IEEE Transactions on Knowledge and Data Engineering 36 (4), 1728-1740, 2023 | 26 | 2023 |
Generating Realistic Synthetic Population Datasets H Wu, Y Ning, P Chakraborty, J Vreeken, N Tatti, N Ramakrishnan ACM Transactions on Knowledge Discovery from Data (TKDD), 2018 | 25 | 2018 |
Understanding event predictions via contextualized multilevel feature learning S Deng, H Rangwala, Y Ning Proceedings of the 30th ACM International Conference on Information …, 2021 | 23 | 2021 |
Incorporating relational knowledge in explainable fake news detection K Wu, X Yuan, Y Ning Pacific-Asia Conference on Knowledge Discovery and Data Mining, 403-415, 2021 | 23 | 2021 |