Прати
Giuseppe Paolo
Giuseppe Paolo
Верификована је имејл адреса на huawei.com - Почетна страница
Наслов
Навело
Навело
Година
Virtual-to-real deep reinforcement learning: Continuous control of mobile robots for mapless navigation
L Tai, G Paolo, M Liu
2017 IEEE/RSJ international conference on intelligent robots and systems …, 2017
9232017
A data-driven model for interaction-aware pedestrian motion prediction in object cluttered environments
M Pfeiffer, G Paolo, H Sommer, J Nieto, R Siegwart, C Cadena
2018 IEEE international conference on robotics and automation (ICRA), 5921-5928, 2018
1362018
Unsupervised Learning and Exploration of Reachable Outcome Space
G Paolo, A Laflaquière, A Coninx, S Doncieux
2020 IEEE International Conference on Robotics and Automation, ICRA 2020, 2019
312019
Novelty search makes evolvability inevitable
S Doncieux, G Paolo, A Laflaquière, A Coninx
Proceedings of the 2020 Genetic and Evolutionary Computation Conference, 85-93, 2020
282020
Sparse reward exploration via novelty search and emitters
G Paolo, A Coninx, S Doncieux, A Laflaquière
Proceedings of the 2021 Genetic and Evolutionary Computation Conference, 2021
242021
SAMformer: Unlocking the Potential of Transformers in Time Series Forecasting with Sharpness-Aware Minimization and Channel-Wise Attention
R Ilbert, A Odonnat, V Feofanov, A Virmaux, G Paolo, T Palpanas, I Redko
Forty-first International Conference on Machine Learning, 2024
19*2024
Position: A Call for Embodied AI
G Paolo, J Gonzalez-Billandon, B Kégl
Forty-first International Conference on Machine Learning, 2024
12*2024
Towards continuous control of flippers for a multi-terrain robot using deep reinforcement learning
G Paolo, L Tai, M Liu
arXiv preprint arXiv:1709.08430, 2017
112017
Large language models orchestrating structured reasoning achieve kaggle grandmaster level
A Grosnit, A Maraval, J Doran, G Paolo, A Thomas, RSHN Beevi, ...
arXiv preprint arXiv:2411.03562, 2024
42024
Guided safe shooting: model based reinforcement learning with safety constraints
G Paolo, J Gonzalez-Billandon, A Thomas, B Kégl
arXiv preprint arXiv:2206.09743, 2022
42022
Learning in sparse rewards settings through quality-diversity algorithms
G Paolo
arXiv preprint arXiv:2203.01027, 2022
42022
Discovering and exploiting sparse rewards in a learned behavior space
G Paolo, M Coninx, A Laflaquière, S Doncieux
Evolutionary Computation 32 (3), 275-305, 2024
32024
Zero-shot Model-based Reinforcement Learning using Large Language Models
A Benechehab, YAE Hili, A Odonnat, O Zekri, A Thomas, G Paolo, ...
arXiv preprint arXiv:2410.11711, 2024
12024
Multi-timestep models for Model-based Reinforcement Learning
A Benechehab, G Paolo, A Thomas, M Filippone, B Kégl
arXiv preprint arXiv:2310.05672, 2023
12023
TAG: A Decentralized Framework for Multi-Agent Hierarchical Reinforcement Learning
G Paolo, A Benechehab, H Cherkaoui, A Thomas, B Kégl
arXiv preprint arXiv:2502.15425, 2025
2025
AdaPTS: Adapting Univariate Foundation Models to Probabilistic Multivariate Time Series Forecasting
A Benechehab, V Feofanov, G Paolo, A Thomas, M Filippone, B Kégl
arXiv preprint arXiv:2502.10235, 2025
2025
A Multi-step Loss Function for Robust Learning of the Dynamics in Model-based Reinforcement Learning
A Benechehab, A Thomas, G Paolo, M Filippone, B Kégl
arXiv preprint arXiv:2402.03146, 2024
2024
Fair Model-Based Reinforcement Learning Comparisons with Explicit and Consistent Update Frequency
A Thomas, A Benechehab, G Paolo, B Kégl
The Third Blogpost Track at ICLR 2024, 2024
2024
Editorial to the “Evolutionary Reinforcement Learning” Special Issue
A Gaier, G Paolo, A Cully
ACM Transactions on Evolutionary Learning 3 (3), 1-2, 2023
2023
A Study of the Weighted Multi-step Loss Impact on the Predictive Error and the Return in MBRL
A Benechehab, A Thomas, G Paolo, M Filippone, B Kégl
I Can't Believe It's Not Better Workshop: Failure Modes of Sequential …, 0
Систем тренутно не може да изврши ову радњу. Пробајте поново касније.
Чланци 1–20