Learning causally invariant representations for out-of-distribution generalization on graphs Y Chen, Y Zhang, Y Bian, H Yang, MA Kaili, B Xie, T Liu, B Han, J Cheng Advances in Neural Information Processing Systems 35, 22131-22148, 2022 | 158 | 2022 |
Pareto invariant risk minimization: Towards mitigating the optimization dilemma in out-of-distribution generalization Y Chen, K Zhou, Y Bian, B Xie, B Wu, Y Zhang, K Ma, H Yang, P Zhao, ... arXiv preprint arXiv:2206.07766, 2022 | 66 | 2022 |
Does invariant graph learning via environment augmentation learn invariance? Y Chen, Y Bian, K Zhou, B Xie, B Han, J Cheng Advances in Neural Information Processing Systems 36, 2024 | 40 | 2024 |
Invariance principle meets out-of-distribution generalization on graphs Y Chen, Y Zhang, Y Bian, H Yang, MA KAILI, B Xie, T Liu, B Han, J Cheng ICML 2022: Workshop on Spurious Correlations, Invariance and Stability, 2022 | 36 | 2022 |
Fast and Reliable Evaluation of Adversarial Robustness with Minimum-Margin Attack R Gao, J Wang, K Zhou, F Liu, B Xie, G Niu, B Han, J Cheng International Conference on Machine Learning, 7144-7163, 2022 | 16 | 2022 |
An Adaptive Incremental Gradient Method With Support for Non-Euclidean Norms B Xie, C Jin, K Zhou, J Cheng, W Meng arXiv preprint arXiv:2205.02273, 2022 | 4 | 2022 |
RETHINKING INVARIANT GRAPH REPRESENTATION LEARNING WITHOUT ENVIRONMENT PARTITIONS Y Chen, Y Bian, K Zhou, B Xie, B Han, J Cheng | 4 | |
Enhancing evolving domain generalization through dynamic latent representations B Xie, Y Chen, J Wang, K Zhou, B Han, W Meng, J Cheng Proceedings of the AAAI Conference on Artificial Intelligence 38 (14), 16040 …, 2024 | 3 | 2024 |
Second Order enhanced Multi-glimpse Attention in Visual Question Answering Q Sun, B Xie, Y Fu Proceedings of the Asian Conference on Computer Vision, 2020 | 2 | 2020 |
Enhancing Neural Subset Selection: Integrating Background Information into Set Representations B Xie, Y Bian, Y Chen, P Zhao, B Han, W Meng, J Cheng arXiv preprint arXiv:2402.03139, 2024 | 1 | 2024 |
Positional Information Matters for Invariant In-Context Learning: A Case Study of Simple Function Classes Y Chen, B Xie, K Zhou, B Han, Y Bian, J Cheng arXiv preprint arXiv:2311.18194, 2023 | | 2023 |
Pareto Invariant Risk Minimization Y Chen, K Zhou, Y Bian, B Xie, K Ma, Y Zhang, H Yang, B Han, J Cheng arXiv preprint arXiv:2206.07766, 2022 | | 2022 |
Understanding and Improving Composite Bayesian Optimization K Zhou, B Xie, J Lyu, Z Chen | | |
HORSE: Hierarchical Representation for Large-Scale Neural Subset Selection B Xie, Y Wang, Y Chen, K Zhou, Y Li, W Meng, J Cheng The Thirty-eighth Annual Conference on Neural Information Processing Systems, 0 | | |