Manufacturing Control in Job Shop Environments with Reinforcement Learning. V Samsonov, M Kemmerling, M Paegert, D Lütticke, F Sauermann, ... ICAART (2), 589-597, 2021 | 49 | 2021 |
Deep Reinforcement Learning for Robotic Control in High-Dexterity Assembly Tasks—A Reward Curriculum Approach L Leyendecker, M Schmitz, HA Zhou, V Samsonov, M Rittstieg, D Lütticke International Journal of Semantic Computing 16 (03), 381-402, 2022 | 21 | 2022 |
Towards digital shadows for production planning and control in injection molding P Sapel, A Gannouni, J Fulterer, C Hopmann, M Schmitz, D Lütticke, ... CIRP Journal of Manufacturing Science and Technology 38, 243-251, 2022 | 18 | 2022 |
Digitizing a Distributed Textile Production Process using Industrial Internet of Things: A Use-Case M Rath, A Gannouni, D Luetticke, T Gries 2021 4th IEEE International Conference on Industrial Cyber-Physical Systems …, 2021 | 12 | 2021 |
Towards ProductionReady Reinforcement Learning Scheduling Agents: A Hybrid Two-Step Training Approach Based on Discrete-Event Simulations M Kemmerling, V Samsonov, T Janke, D Lütticke, A Gützlaff, ... Simulation in Produktion und Logistik, 325-336, 2021 | 12 | 2021 |
Beyond games: a systematic review of neural Monte Carlo tree search applications M Kemmerling, D Lütticke, RH Schmitt Applied Intelligence 54 (1), 1020-1046, 2024 | 11 | 2024 |
Using Reinforcement Learning for Optimization of a Workpiece Clamping Position in a Machine Tool. V Samsonov, C Enslin, HG Köpken, S Baer, D Lütticke ICEIS (1), 506-514, 2020 | 11 | 2020 |
Data-driven decision support for process quality improvements D Buschmann, C Enslin, H Elser, D Lütticke, RH Schmitt Procedia CIRP 99, 313-318, 2021 | 10 | 2021 |
Cyber-physical production systems: a teaching concept in engineering education D Antkowiak, D Luetticke, T Langer, T Thiele, T Meisen, S Jeschke 2017 6th IIAI International Congress on Advanced Applied Informatics (IIAI …, 2017 | 8 | 2017 |
ProdSim: An Open-source Python Package for Generating High-resolution Synthetic Manufacturing Data on Product, Machine and Shop-Floor Levels T Fuchs, C Enslin, V Samsonov, D Lütticke, RH Schmitt Procedia CIRP 107, 1343-1348, 2022 | 6 | 2022 |
Design of an automated measuring system for rfid transponders in complex environments D Luetticke, T Meisen 2018 IEEE International Conference on RFID Technology & Application (RFID-TA …, 2018 | 6 | 2018 |
Evolving the Digital Industrial Infrastructure for Production: Steps Taken and the Road Ahead J Pennekamp, A Belova, T Bergs, M Bodenbenner, A Bührig-Polaczek, ... Internet of Production: Fundamentals, Methods and Applications, 35-60, 2023 | 5 | 2023 |
A Data-Driven Two-Phase Multi-Split Causal Ensemble Model for Time Series Z Ma, M Kemmerling, D Buschmann, C Enslin, D Lütticke, RH Schmitt Symmetry 15 (5), 982, 2023 | 5* | 2023 |
Optimisation of a Workpiece Clamping Position with Reinforcement Learning for Complex Milling Applications C Enslin, V Samsonov, HG Köpken, S Bär, D Lütticke International Conference on Machine Learning, Optimization, and Data Science …, 2021 | 5 | 2021 |
Managing disruptions in production with machine learning V Samsonov, C Enslin, B Luetkehoff, F Steinlein, D Lütticke, V Stich Proceedings of the Conference on Production Systems and Logistics: CPSL 2020, 2020 | 5 | 2020 |
Controlled Synthesis of Fibre-reinforced Plastics Images from Segmentation Maps using Generative Adversarial Neural Networks. N Schaaf, HA Zhou, C Enslin, F Brillowski, D Lütticke ICAART (3), 801-809, 2022 | 4 | 2022 |
Deep representation learning and reinforcement learning for workpiece setup optimization in CNC milling V Samsonov, E Chrismarie, HG Köpken, S Bär, D Lütticke, T Meisen Production Engineering 17 (6), 847-859, 2023 | 3 | 2023 |
Anomaly Detection in Control Systems With Interval Dissimilarity M Kemmerling, M Combrzynski-Nogala, M Haßler, C Enslin, D Lütticke, ... 2022 Cybernetics & Informatics (K&I), 1-6, 2022 | 3 | 2022 |
Reward Shaping for Job Shop Scheduling A Nasuta, M Kemmerling, D Lütticke, RH Schmitt International Conference on Machine Learning, Optimization, and Data Science …, 2023 | 2 | 2023 |
Human-Centric Machine Learning Approach for Injection Mold Design: Towards Automated Ejector Pin Placement R Jungnickel, J Lauwigi, V Samsonov, D Lütticke International Conference on Machine Learning, Optimization, and Data Science …, 2022 | 2 | 2022 |