Simultaneous finite time blow-up in a two-species model for chemotaxis EE Espejo, A Stevens, JJL Velázquez | 128 | 2009 |
Remarks on the blowup and global existence for a two species chemotactic Keller–Segel system in 2 C Conca, E Espejo, K Vilches European Journal of Applied Mathematics 22 (6), 553-580, 2011 | 118 | 2011 |
Reaction terms avoiding aggregation in slow fluids E Espejo, T Suzuki Nonlinear Analysis: Real World Applications 21, 110-126, 2015 | 86 | 2015 |
Global classical solvability and stabilization in a two-dimensional chemotaxis-Navier–Stokes system modeling coral fertilization E Espejo, M Winkler Nonlinearity 31 (4), 1227, 2018 | 70 | 2018 |
Global existence and blow-up for a system describing the aggregation of microglia E Espejo, T Suzuki Applied Mathematics Letters 35, 29-34, 2014 | 70 | 2014 |
Blowup in higher dimensional two species chemotactic systems P Biler, I Espejo, Elio, Guerra Communications on Pure and Applied Analysis (CPAA) 12 (1), 89-98, 2013 | 65 | 2013 |
Sharp Condition for blow-up and global existence in a two species chemotactic Keller-Segel system in EE Espejo, K Vilches, C Conca European Journal of Applied Mathematics 24 (02), 297-313, 2013 | 55 | 2013 |
A note on non-simultaneous blow-up for a drift-diffusion model EE Espejo, A Stevens, JJL Velazquez | 51 | 2010 |
Simultaneous blowup and mass separation during collapse in an interacting system of chemotactic species EE Espejo, A Stevens, T Suzuki | 40 | 2012 |
A simultaneous blow-up problem arising in tumor modeling E Espejo, K Vilches, C Conca Journal of mathematical biology 79 (4), 1357-1399, 2019 | 27 | 2019 |
Threshold condition for global existence and blow-up to a radially symmetric drift–diffusion system C Conca, E Espejo Applied Mathematics Letters 25 (3), 352-356, 2012 | 24 | 2012 |
Reaction enhancement by chemotaxis E Espejo, T Suzuki Nonlinear Analysis: Real World Applications 35, 102-131, 2017 | 20 | 2017 |
Optimal critical mass for the two-dimensional Keller–Segel model with rotational flux terms E Espejo, H Wu Communications in Mathematical Sciences 18 (2), 379-394, 2020 | 15 | 2020 |
Blowup threshold and collapse mass separation for a drift-diffusion system in-space dimension two. E Espejo, M Kurokiba, T Suzuki COMMUNICATIONS ON PURE AND APPLIED ANALYSIS 12 (6), 2627-2644, 2013 | 6 | 2013 |
The Patlak–Keller–Segel model of chemotaxis on R2 with singular drift and mortality rate G Wolansky, E Espejo Nonlinearity 26 (8), 2315, 2013 | 3 | 2013 |
Blow-up of solutions to the Keller–Segel model with tensorial flux in high dimensions V Cuentas, E Espejo, T Suzuki Applied Mathematics Letters 154, 109090, 2024 | 2 | 2024 |
A note on the blow-up of solutions to the two-dimensional Keller-Segel model with tensorial flux V Cuentas, E Espejo Nonlinear Differential Equations and Applications NoDEA 32 (2), 18, 2025 | | 2025 |
Remarks on KS models describing cell aggregation with obstacle interference V Cuentas, E Espejo Nonlinear Differential Equations and Applications NoDEA 31 (6), 108, 2024 | | 2024 |
Optimal critical mass for the multi-species Keller-Segel model with rotational flux terms V Cuentas, E Espejo Differential and Integral Equations 37 (11/12), 753-816, 2024 | | 2024 |
Analysis of a model describing bacterial colony expansion in radial geometry driven by chemotaxis E Espejo European Journal of Applied Mathematics, 1-38, 2024 | | 2024 |