Följ
Sandra Zilker
Sandra Zilker
Technische Hochschule Nürnberg Georg Simon Ohm
Verifierad e-postadress på fau.de
Titel
Citeras av
Citeras av
År
Prescriptive business process monitoring for recommending next best actions
S Weinzierl, S Dunzer, S Zilker, M Matzner
International conference on business process management, 193-209, 2020
852020
XNAP: making LSTM-based next activity predictions explainable by using LRP
S Weinzierl, S Zilker, J Brunk, K Revoredo, M Matzner, J Becker
International Conference on Business Process Management, 129-141, 2020
402020
The influence of algorithm aversion and anthropomorphic agent design on the acceptance of AI-based job recommendations.
J Ochmann, L Michels, S Zilker, V Tiefenbeck, S Laumer
ICIS, 2020
372020
Bringing light into the darkness-A systematic literature review on explainable predictive business process monitoring techniques
M Stierle
Deutsche Nationalbibliothek, 2021
242021
A Next Click Recommender System for Web-based Service Analytics with Context-aware LSTMs.
S Weinzierl, M Stierle, S Zilker, M Matzner
HICSS, 1-10, 2020
242020
The evaluation of the black box problem for AI-based recommendations: An interview-based study
J Ochmann, S Zilker, S Laumer
Innovation Through Information Systems: Volume II: A Collection of Latest …, 2021
232021
GAM (e) changer or not? An evaluation of interpretable machine learning models based on additive model constraints
P Zschech, S Weinzierl, N Hambauer, S Zilker, M Kraus
arXiv preprint arXiv:2204.09123, 2022
222022
An empirical comparison of deep-neural-network architectures for next activity prediction using context-enriched process event logs
S Weinzierl, S Zilker, J Brunk, K Revoredo, A Nguyen, M Matzner, ...
arXiv preprint arXiv:2005.01194, 2020
222020
From predictive to prescriptive process monitoring: Recommending the next best actions instead of calculating the next most likely events.
S Weinzierl, S Zilker, M Stierle, M Matzner, G Park
Wirtschaftsinformatik (Zentrale Tracks), 364-368, 2020
212020
Machine learning in business process management: A systematic literature review
S Weinzierl, S Zilker, S Dunzer, M Matzner
Expert Systems with Applications, 124181, 2024
132024
Predictive business process deviation monitoring
S Weinzierl, S Dunzer, J Tenschert, S Zilker, M Matzner
ECIS, 1-10, 2021
122021
The status quo of process mining in the industrial sector
S Dunzer, S Zilker, E Marx, V Grundler, M Matzner
Innovation Through Information Systems: Volume III: A Collection of Latest …, 2021
112021
Text-aware predictive process monitoring with contextualized word embeddings
L Cabrera, S Weinzierl, S Zilker, M Matzner
International Conference on Business Process Management, 303-314, 2022
102022
Design principles for comprehensible process discovery in process mining
M Stierle, S Zilker, S Dunzer, JC Tenscher, G Karagegova
82020
Best of both worlds: Combining predictive power with interpretable and explainable results for patient pathway prediction
S Zilker, S Weinzierl, P Zschech, M Kraus, M Matzner
ECIS, 2023
62023
A machine learning framework for interpretable predictions in patient pathways: The case of predicting ICU admission for patients with symptoms of sepsis
S Zilker, S Weinzierl, M Kraus, P Zschech, M Matzner
Health Care Management Science 27 (2), 136-167, 2024
42024
Process Mining for Advanced Service Analytics–From Process Efficiency to Customer Encounter and Experience
S Zilker, E Marx, M Stierle, M Matzner
32022
Job seekers' artificial intelligence-related black box concerns
J Ochmann, S Zilker, S Laumer
Proceedings of the 2020 Computers and People Research Conference, 101-102, 2020
32020
Predicting Customer Satisfaction in Service Processes Using Multilingual Large Language Models
A Liessmann, S Zilker, S Weinzierl, M Sukhareva, M Matzner
22024
Design principles for using business process management systems
S Dunzer, W Tang, N Höchstädter, S Zilker, M Matzner
International Conference on Business Process Management, 217-228, 2023
22023
Systemet kan inte utföra åtgärden just nu. Försök igen senare.
Artiklar 1–20