Följ
Noushin Omidvar
Noushin Omidvar
Aionics Inc.
Verifierad e-postadress på aionics.io
Titel
Citeras av
Citeras av
År
Machine-learning energy gaps of porphyrins with molecular graph representations
Z Li, N Omidvar, WS Chin, E Robb, A Morris, L Achenie, H Xin
The Journal of Physical Chemistry A 122 (18), 4571-4578, 2018
592018
Interpretable design of Ir-free trimetallic electrocatalysts for ammonia oxidation with graph neural networks
HS Pillai, Y Li, SH Wang, N Omidvar, Q Mu, LEK Achenie, ...
Nature communications 14 (1), 792, 2023
512023
Interpretable machine learning of chemical bonding at solid surfaces
N Omidvar, HS Pillai, SH Wang, T Mou, S Wang, A Athawale, ...
The Journal of Physical Chemistry Letters 12 (46), 11476-11487, 2021
382021
Coordination numbers for unraveling intrinsic size effects in gold-catalyzed CO oxidation
S Wang, N Omidvar, E Marx, H Xin
Physical Chemistry Chemical Physics 20 (9), 6055-6059, 2018
322018
In vitro osteogenic induction of human marrow‐derived mesenchymal stem cells by PCL fibrous scaffolds containing dexamethazone‐loaded chitosan microspheres
N Omidvar, F Ganji, MB Eslaminejad
Journal of biomedical materials research Part A 104 (7), 1657-1667, 2016
262016
Overcoming site heterogeneity in search of metal nanocatalysts
S Wang, N Omidvar, E Marx, H Xin
ACS Combinatorial Science 20 (10), 567-572, 2018
232018
Algorithm-derived feature representations for explainable AI in catalysis
N Omidvar, H Xin
Trends in Chemistry 3 (12), 990-992, 2021
22021
Unraveling Reactivity Origin of Oxygen Reduction at High-Entropy Alloy Electrocatalysts with a Computational and Data-Driven Approach
Y Huang, SH Wang, X Wang, N Omidvar, LEK Achenie, SE Skrabalak, ...
The Journal of Physical Chemistry C 128 (27), 11183-11189, 2024
12024
Explainable AI for optimizing oxygen reduction on Pt monolayer core–shell catalysts
N Omidvar, SH Wang, Y Huang, HS Pillai, A Athawale, S Wang, ...
Electrochemical Science Advances, e202300028, 2024
2024
Toward Designing Active ORR Catalysts via Interpretable and Explainable Machine Learning
N Omidvar
Virginia Tech, 2022
2022
Bayesian Chemisorption Model for Adsorbate-Specific Tuning of Electrocatalysis
S Wang, H Pillai, N Omidvar, H Xin
2020 Virtual AIChE Annual Meeting, 2020
2020
Physics Informed Machine Learning of Chemisorption at Metal Surfaces
SH Wang, S Wang, N Omidvar, L Achenie, H Xin
2020 Virtual AIChE Annual Meeting, 2020
2020
Role of Intra-Particle Grain Boundaries in CO2 Electroreduction
N Omidvar, S Jeong, X Ye, H Xin
2019 AIChE Annual Meeting, 2019
2019
Orbitalwise Coordination Number in Search of Metal Nanocatalysts for Oxygen Reduction
S Wang, N Omidvar, E Marx, H Xin
2019 AIChE Annual Meeting, 2019
2019
Developing First-Principles Based Interatomic Potentials with Bayesian Inference
N Omidvar, H Xin
2019 AIChE Annual Meeting, 2019
2019
Machine learning for accelerating discovery of perovskite electrocatalysts
H Xin, Z Li, N Omidvar, L Achenie
ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY 257, 2019
2019
Large-Scale Exploration of Perovskites for Oxygen Evolution Via Adaptive Machine Learning
Z Li, Q Zheng, N Omidvar, H Xin
2018 AIChE Annual Meeting, 2018
2018
A Machine Learning Model for Accelerating Biomimetic Electrocatalyst Discovery
H Pillai, N Omidvar, J Luo, H Xin
2018 AIChE Annual Meeting, 2018
2018
Developing First-Principles Based Embedded Atom Method Potentials for Metal Clusters Using Bayesian Statistics
N Omidvar, S Wang, H Xin
2018 AIChE Annual Meeting, 2018
2018
Overcoming Site Heterogeneity in Search of Metal Nanocatalysts for Oxygen Reduction
S Wang, N Omidvar, E Marx, H Xin
2018 AIChE Annual Meeting, 2018
2018
Systemet kan inte utföra åtgärden just nu. Försök igen senare.
Artiklar 1–20