Derived Optimal Linear Combination Evapotranspiration (DOLCE): a global gridded synthesis ET estimate S Hobeichi, G Abramowitz, J Evans, A Ukkola Hydrology and Earth System Sciences 22 (2), 1317-1336, 2018 | 67 | 2018 |
Linear Optimal Runoff Aggregate (LORA): A global gridded synthesis runoff product S Hobeichi, G Abramowitz, J Evans, HE Beck Hydrology and Earth System Sciences 23 (2), 851-870, 2019 | 48 | 2019 |
Exploring how groundwater buffers the influence of heatwaves on vegetation function during multi-year droughts M Mu, MG De Kauwe, AM Ukkola, AJ Pitman, W Guo, S Hobeichi, ... Earth System Dynamics Discussions 2021, 1-29, 2021 | 45 | 2021 |
Remote sensing of Qatar nearshore habitats with perspectives for coastal management C Warren, J Dupont, M Abdel-Moati, S Hobeichi, D Palandro, S Purkis Marine pollution bulletin 105 (2), 641-653, 2016 | 33 | 2016 |
Bridge to the future: Important lessons from 20 years of ecosystem observations made by the OzFlux network J Beringer, CE Moore, J Cleverly, DI Campbell, H Cleugh, MG De Kauwe, ... Global Change Biology 28 (11), 3489-3514, 2022 | 31 | 2022 |
Robust historical evapotranspiration trends across climate regimes S Hobeichi, G Abramowitz, J Evans Hydrology and Earth System Sciences Discussions 2020, 1-32, 2020 | 31 | 2020 |
Conserving land–atmosphere synthesis suite (CLASS) S Hobeichi, G Abramowitz, J Evans Journal of Climate 33 (5), 1821-1844, 2020 | 30 | 2020 |
Enhancing regional climate downscaling through advances in machine learning N Rampal, S Hobeichi, PB Gibson, J Baño-Medina, G Abramowitz, ... Artificial Intelligence for the Earth Systems 3 (2), 230066, 2024 | 23 | 2024 |
Reconciling historical changes in the hydrological cycle over land S Hobeichi, G Abramowitz, AM Ukkola, M De Kauwe, A Pitman, JP Evans, ... npj Climate and Atmospheric Science 5 (1), 17, 2022 | 22 | 2022 |
Using machine learning to cut the cost of dynamical downscaling S Hobeichi, N Nishant, Y Shao, G Abramowitz, A Pitman, S Sherwood, ... Earth's Future 11 (3), e2022EF003291, 2023 | 21 | 2023 |
Estimating aboveground carbon dynamic of China using optical and microwave remote-sensing datasets from 2013 to 2019 Z Chang, L Fan, JP Wigneron, YP Wang, P Ciais, J Chave, R Fensholt, ... Journal of Remote Sensing 3, 0005, 2023 | 21 | 2023 |
Toward a robust, impact‐based, predictive drought metric S Hobeichi, G Abramowitz, JP Evans, A Ukkola Water Resources Research 58 (2), e2021WR031829, 2022 | 20 | 2022 |
New forest aboveground biomass maps of China integrating multiple datasets Z Chang, S Hobeichi, YP Wang, X Tang, G Abramowitz, Y Chen, N Cao, ... Remote Sensing 13 (15), 2892, 2021 | 20 | 2021 |
Australia’s Tinderbox Drought: An extreme natural event likely worsened by human-caused climate change A Devanand, GM Falster, ZE Gillett, S Hobeichi, CM Holgate, C Jin, M Mu, ... Science Advances 10 (10), eadj3460, 2024 | 19 | 2024 |
Evaluating precipitation datasets using surface water and energy budget closure S Hobeichi, G Abramowitz, S Contractor, J Evans Journal of Hydrometeorology 21 (5), 989-1009, 2020 | 16 | 2020 |
Comparison of a novel machine learning approach with dynamical downscaling for Australian precipitation N Nishant, S Hobeichi, S Sherwood, G Abramowitz, Y Shao, C Bishop, ... Environmental Research Letters 18 (9), 094006, 2023 | 10 | 2023 |
Derived optimal linear combination evapotranspiration—DOLCE v2. 1 S Hobeichi, G Abramowitz, JP Evans Research Data Australia. doi: doi 10, 2020 | 7 | 2020 |
A robust generative adversarial network approach for climate downscaling and weather generation N Rampal, PB Gibson, S Sherwood, G Abramowitz, S Hobeichi ESS Open Archive eprints 789, 171352077.78968815, 2024 | 5 | 2024 |
What is the probability that a drought will break in Australia? A Devanand, JP Evans, G Abramowitz, S Hobeichi, AJ Pitman Weather and Climate Extremes 41, 100598, 2023 | 5 | 2023 |
Using machine learning to cut the cost of dynamical downscaling. Earth’s Future, 11, e2022EF003291 S Hobeichi, N Nishant, Y Shao, G Abramowitz, A Pitman, S Sherwood, ... | 5 | 2023 |