Följ
Aimi Athirah Aznan
Aimi Athirah Aznan
Department of Agrotechnology, Faculty of Mechanical Engineering & Technology, Universiti Malaysia
Verifierad e-postadress på unimap.edu.my
Titel
Citeras av
Citeras av
År
Computer vision and machine learning analysis of commercial rice grains: A potential digital approach for consumer perception studies
A Aznan, C Gonzalez Viejo, A Pang, S Fuentes
Sensors 21 (19), 6354, 2021
322021
Rapid detection of fraudulent rice using low-cost digital sensing devices and machine learning
A Aznan, C Gonzalez Viejo, A Pang, S Fuentes
Sensors 22 (22), 8655, 2022
212022
The use of machine vision technique to classify cultivated rice seed variety and weedy rice seed variants for the seed industry.
AA Aznan, IH Rukunudin, AYM Shakaff, R Ruslan, A Zakaria, FSA Saad
International Food Research Journal 23, 2016
192016
Rice seed varieties identification based on extracted colour features using image processing and artificial neural network (ANN)
AA Aznan, R Ruslan, IH Rukunudin, FA Azizan, AY Hashim
Int. J. Adv. Sci. Eng. Inf. Technol 7 (6), 2220-2225, 2017
162017
Soil NPK variability mapping for Harumanis mango grown in greenhouse at Perlis, Malaysia
FA Azizan, N Roslan, R Ruslan, AA Aznan, AZM Yusoff
International Journal on Advanced Science, Engineering and Information …, 2019
152019
Review of technology advances to assess rice quality traits and consumer perception
A Aznan, CG Viejo, A Pang, S Fuentes
Food Research International 172, 113105, 2023
112023
Extraction of morphological features of malaysian rice seed varieties using flatbed scanner
R Ruslan, AA Aznan, FA Azizan, N Roslan, N Zulkifli
Int. J. Adv. Sci. Eng. Inf. Technol 8 (1), 93-98, 2018
112018
Rapid assessment of rice quality traits using low-cost digital technologies
A Aznan, C Gonzalez Viejo, A Pang, S Fuentes
Foods 11 (9), 1181, 2022
82022
Growth monitoring of Harumanis mango leaves (Mangifera Indica) at vegetative stage using SPAD meter and leaf area meter
N Roslan, AA Aznan, R Ruslan, MN Jaafar, FA Azizan
IOP Conference Series: Materials Science and Engineering 557 (1), 012010, 2019
72019
Groundwater assessment using geophysical survey at Insat, Perlis, Malaysia
FA Azizan, AA Aznan, R Ruslan, M Nazari, MN Jaafar
IOP Conference Series: Materials Science and Engineering 429 (1), 012026, 2018
72018
Effect of Background Color on Rice Seed Image Segmentation using Machine Vision
R Ruslan, MF Ibrahim, S Khairunniza-Bejo, AA Aznan, IH Rukunudin, ...
2018 International Conference on Computational Approach in Smart Systems …, 2018
72018
Analysis of spatial distribution of soil moisture content for different soil layers in mango greenhouse
FA Azizan, FNM Zalani, A Nagarajan, AA Aznan, R Ruslan
IOP Conference Series: Materials Science and Engineering 557 (1), 012070, 2019
42019
Specific energy consumption and drying efficiency analysis of commercial mixed-flow batch type seed drying system
MZ Azmi, IH Rukunudin, HA Ismail, AA Aznan
Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 55 (1 …, 2019
32019
Application of image processing technique to extract morphological characteristics of weedy rice seeds variants for Malaysian seed industry
AA Aznan, IH Rukunudin, AYM Shakaff, R Ruslan, A Zakaria, FSA Saad
Advances in Environmental Biology, 112-116, 2014
32014
Assessment of carbohydrate contents in perlis harumanis mango leaves during vegetative and productive growth
NH Hazis, AA Aznan, MN Jaafar, FA Azizan, R Ruslan, IH Rukunudin
IOP Conference Series: Materials Science and Engineering 429 (1), 012025, 2018
22018
Rapid detection of rice adulteration using a low-cost electronic nose and machine learning modelling
A Aznan, C Gonzalez Viejo, A Pang, S Fuentes
Engineering Proceedings 27 (1), 1, 2022
12022
Spatial and temporal variability in the harumanis mango leaves at vegetative stage in a greenhouse
N Roslan, R Ruslan, MN Jaafar, AA Aznan, FA Azizan, IH Rukunudin
12006
Selection of Morphological Features in Classifying Weedy Rice and Rice Seed Varieties using Discriminant Function Analysis
R Ruslan, SK Bejo, IH Rukunuddin, AA Aznan
IOP Conference Series: Materials Science and Engineering 557 (1), 012014, 2019
2019
The use of machine vision technique to classify cultivated rice seed variety and weedy rice seed variants for the seed industry
AYM Shakaff, IH Rukunudin, R Ruslan, A Zakaria, AA Aznan, FSA Saad
International Food Research Journal (Malaysia), 2016
2016
Identification of Cultivated Rice MR 263 Seed and Weedy Rice Seed Variants Using CCD Camera Based-machine Vision System
AA Aznan
School of Bioprocess Engineering, Universiti Malaysia Perlis, 2015
2015
Systemet kan inte utföra åtgärden just nu. Försök igen senare.
Artiklar 1–20