Anomaly detection in video sequences: A benchmark and computational model B Wan, W Jiang, Y Fang, Z Luo, G Ding IET Image Processing 15 (14), 3454-3465, 2021 | 65 | 2021 |
Single-channel EEG-based mental fatigue detection based on deep belief network P Li, W Jiang, F Su 2016 38th Annual International Conference of the IEEE Engineering in …, 2016 | 51 | 2016 |
UDNet: Uncertainty-aware deep network for salient object detection Y Fang, H Zhang, J Yan, W Jiang, Y Liu Pattern recognition 134, 109099, 2023 | 32 | 2023 |
Visual cluster grounding for image captioning W Jiang, M Zhu, Y Fang, G Shi, X Zhao, Y Liu IEEE Transactions on Image Processing 31, 3920-3934, 2022 | 31 | 2022 |
Hybrid attention network for image captioning W Jiang, Q Li, K Zhan, Y Fang, F Shen Displays 73, 102238, 2022 | 25 | 2022 |
Revisiting image captioning via maximum discrepancy competition B Wan, W Jiang, YM Fang, M Zhu, Q Li, Y Liu Pattern Recognition 122, 108358, 2022 | 15 | 2022 |
Visual attention prediction for Autism Spectrum Disorder with hierarchical semantic fusion Y Fang, H Zhang, Y Zuo, W Jiang, H Huang, J Yan Signal Processing: Image Communication 93, 116186, 2021 | 15 | 2021 |
Superpixel-based quality assessment of multi-exposure image fusion for both static and dynamic scenes Y Fang, Y Zeng, W Jiang, H Zhu, J Yan IEEE Transactions on Image Processing 30, 2526-2537, 2021 | 14 | 2021 |
A local features-based approach to all-sky image prediction F Su, W Jiang, J Zhang, H Wang, M Zhang IBM Journal of Research and Development 59 (2/3), 6: 1-6: 10, 2015 | 14 | 2015 |
CFNet: conditional filter learning with dynamic noise estimation for real image denoising Y Zuo, W Yao, Y Zeng, J Xie, Y Fang, Y Huang, W Jiang Knowledge-Based Systems 284, 111320, 2024 | 11 | 2024 |
Intention recognition for multiple agents Z Zhang, Y Zeng, Y Pan arXiv preprint arXiv:2112.02513, 2021 | 10 | 2021 |
Dynamic proposal sampling for weakly supervised object detection W Jiang, Z Zhao, F Su, Y Fang Neurocomputing 441, 248-259, 2021 | 10 | 2021 |
Weakly supervised detection with decoupled attention-based deep representation W Jiang, Z Zhao, F Su Multimedia Tools and Applications 77 (3), 3261-3277, 2018 | 8 | 2018 |
Optimizing region selection for weakly supervised object detection W Jiang, T Ngo, BS Manjunath, Z Zhao, F Su arXiv preprint arXiv:1708.01723, 2017 | 8 | 2017 |
Ego-motion classification for driving vehicle L Du, W Jiang, Z Zhao, F Su 2017 IEEE Third International Conference on Multimedia Big Data (BigMM), 276-279, 2017 | 8 | 2017 |
Informative attention supervision for grounded video description B Wan, W Jiang, Y Fang ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and …, 2022 | 5 | 2022 |
Part-based deep network for pedestrian detection in surveillance videos Q Chen, W Jiang, Y Zhao, Z Zhao 2015 Visual Communications and Image Processing (VCIP), 1-4, 2015 | 4 | 2015 |
Comprehensive visual grounding for video description W Jiang, Y Cheng, L Liu, Y Fang, Y Peng, Y Liu Proceedings of the AAAI Conference on Artificial Intelligence 38 (3), 2552-2560, 2024 | 2 | 2024 |
Revisiting the robustness of spatio-temporal modeling in video quality assessment J Yan, L Wu, W Jiang, C Liu, F Shen Displays 81, 102585, 2024 | 2 | 2024 |
Dual-stream self-attention network for image captioning B Wan, W Jiang, Y Fang, W Wen, H Liu 2022 IEEE International Conference on Visual Communications and Image …, 2022 | 2 | 2022 |