File systems unfit as distributed storage backends: lessons from 10 years of Ceph evolution A Aghayev, S Weil, M Kuchnik, M Nelson, GR Ganger, G Amvrosiadis Proceedings of the 27th ACM Symposium on Operating Systems Principles, 353-369, 2019 | 130 | 2019 |
Plumber: Diagnosing and removing performance bottlenecks in machine learning data pipelines M Kuchnik, A Klimovic, J Simsa, V Smith, G Amvrosiadis Proceedings of Machine Learning and Systems 4, 33-51, 2022 | 39 | 2022 |
Introducing v0. 5 of the ai safety benchmark from mlcommons B Vidgen, A Agrawal, AM Ahmed, V Akinwande, N Al-Nuaimi, N Alfaraj, ... arXiv preprint arXiv:2404.12241, 2024 | 31 | 2024 |
Efficient Augmentation via Data Subsampling M Kuchnik, V Smith International Conference on Learning Representations, 2019 | 31 | 2019 |
Croissant: A Metadata Format for ML-Ready Datasets M Akhtar, O Benjelloun, C Conforti, P Gijsbers, J Giner-Miguelez, N Jain, ... Proceedings of the Eighth Workshop on Data Management for End-to-End Machine …, 2024 | 28 | 2024 |
Validating large language models with relm M Kuchnik, V Smith, G Amvrosiadis Proceedings of Machine Learning and Systems 5, 457-476, 2023 | 28 | 2023 |
The Atlas Cluster Trace Repository G Amvrosiadis, M Kuchnik, JW Park, C Cranor, G Ganger R., E Moore, ... https://www.usenix.org/publications/login/winter-2018-vol-43-no-4/amvrosiadis, 2018 | 18 | 2018 |
The case for custom storage backends in distributed storage systems A Aghayev, S Weil, M Kuchnik, M Nelson, GR Ganger, G Amvrosiadis ACM Transactions on Storage (TOS) 16 (2), 1-31, 2020 | 17 | 2020 |
This is why ML-driven cluster scheduling remains widely impractical M Kuchnik, JW Park, C Cranor, E Moore, N DeBardeleben, G Amvrosiadis Tech. Rep., 2019 | 17 | 2019 |
Progressive Compressed Records: Taking a Byte out of Deep Learning Data M Kuchnik, G Amvrosiadis, V Smith Proc. VLDB Endow. 14 (11), 2627-2641, 2021 | 9 | 2021 |
Beyond Model Efficiency: Data Optimizations for Machine Learning Systems MR Kuchnik Carnegie Mellon University, 2023 | 3 | 2023 |
Croissant format specification O Benjelloun, E Simperl, P Marcenac, P Ruyssen, C Conforti, M Kuchnik, ... | 1 | 2024 |
Revisiting Reliability in Large-Scale Machine Learning Research Clusters A Kokolis, M Kuchnik, J Hoffman, A Kumar, P Malani, F Ma, Z DeVito, ... arXiv preprint arXiv:2410.21680, 2024 | | 2024 |
A Standardized Machine-readable Dataset Documentation Format for Responsible AI N Jain, M Akhtar, J Giner-Miguelez, R Shinde, J Vanschoren, S Vogler, ... arXiv preprint arXiv:2407.16883, 2024 | | 2024 |
Your Work A Aghayev, S Weil, M Kuchnik, M Nelson, G Ganger, G Amvrosiadis, ... | | 2020 |
SSL Freeform Generator v1. 00 M Kuchnik | | 2014 |
2023 Theses by Author D ANDERSON, E CHU, Y DAI, G FARINA, SA GEORGE, I GROSOF, ... | | |
AGARWAL, Anup CMU-CS-23-100 ANDERSON, Daniel CMU-CS-23-120 BEVERIDGE, Daniel CMU-CS-23-101 BLAKLEY, James CMU-CS-23-101, CMU-CS-23-138 EL BROWN, II CMU-CS, E CHU, Y DAI, Q DONG, T EISZLER, G FARINA, ... | | |
File Systems Unfit as Distributed Storage Back Ends A AGHAYEV, S WEIL, M KUCHNIK, M NELSON, G GANGER, ... | | |
Deep Reinforcement Learning in Continuous Multi Agent Environments A Li, M Kuchnik, Y Luo, R Sawhney | | |