Physics-informed neural networks for power systems GS Misyris, A Venzke, S Chatzivasileiadis 2020 IEEE power & energy society general meeting (PESGM), 1-5, 2020 | 315 | 2020 |
Convex relaxations of chance constrained AC optimal power flow A Venzke, L Halilbasic, U Markovic, G Hug, S Chatzivasileiadis IEEE Transactions on Power Systems 33 (3), 2829-2841, 2017 | 138 | 2017 |
Verification of neural network behaviour: Formal guarantees for power system applications A Venzke, S Chatzivasileiadis IEEE Transactions on Smart Grid 12 (1), 383-397, 2020 | 106 | 2020 |
Efficient database generation for data-driven security assessment of power systems F Thams, A Venzke, R Eriksson, S Chatzivasileiadis IEEE Transactions on Power Systems 35 (1), 30-41, 2019 | 102 | 2019 |
Learning optimal power flow: Worst-case guarantees for neural networks A Venzke, G Qu, S Low, S Chatzivasileiadis 2020 IEEE International Conference on Communications, Control, and Computing …, 2020 | 85 | 2020 |
Efficient creation of datasets for data-driven power system applications A Venzke, DK Molzahn, S Chatzivasileiadis Electric Power Systems Research 190, 106614, 2021 | 54 | 2021 |
Data-driven security-constrained AC-OPF for operations and markets L Halilbašić, F Thams, A Venzke, S Chatzivasileiadis, P Pinson 2018 power systems computation conference (PSCC), 1-7, 2018 | 52 | 2018 |
Convex relaxations of probabilistic AC optimal power flow for interconnected AC and HVDC grids A Venzke, S Chatzivasileiadis IEEE Transactions on Power Systems 34 (4), 2706-2718, 2019 | 50 | 2019 |
Second-order cone relaxations of the optimal power flow for active distribution grids: Comparison of methods L Bobo, A Venzke, S Chatzivasileiadis International Journal of Electrical Power & Energy Systems 127, 106625, 2021 | 49 | 2021 |
Inexact convex relaxations for AC optimal power flow: Towards AC feasibility A Venzke, S Chatzivasileiadis, DK Molzahn Electric Power Systems Research 187, 106480, 2020 | 48 | 2020 |
DeepOPF+: A deep neural network approach for DC optimal power flow for ensuring feasibility T Zhao, X Pan, M Chen, A Venzke, SH Low 2020 IEEE International Conference on Communications, Control, and Computing …, 2020 | 41 | 2020 |
Machine learning in power systems: Is it time to trust it? S Chatzivasileiadis, A Venzke, J Stiasny, G Misyris IEEE Power and Energy Magazine 20 (3), 32-41, 2022 | 36 | 2022 |
Convex Relaxations of Security Constrained AC Optimal Power Flow under Uncertainty A Venzke, S Chatzivasileiadis Power Systems Computation Conference (PSCC), Dublin, 2018 | 32 | 2018 |
Neural networks for encoding dynamic security-constrained optimal power flow I Murzakhanov, A Venzke, GS Misyris, S Chatzivasileiadis arXiv preprint arXiv:2003.07939, 2020 | 31 | 2020 |
Chance-constrained AC optimal power flow integrating HVDC lines and controllability A Venzke, L Halilbašić, A Barré, L Roald, S Chatzivasileiadis International Journal of Electrical Power & Energy Systems 116, 105522, 2020 | 25 | 2020 |
Neural networks for encoding dynamic security-constrained optimal power flow to mixed-integer linear programs A Venzke, D Timon Viola, J Mermet-Guyennet, GS Misyris, ... arXiv e-prints, arXiv: 2003.07939, 2020 | 23 | 2020 |
Model predictive control for reactive power management in transmission connected distribution grids DS Stock, A Venzke, T Hennig, L Hofmann 2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC …, 2016 | 20 | 2016 |
Optimal reactive power management for transmission connected distribution grid with wind farms DS Stock, A Venzke, L Löwer, K Rohrig, L Hofmann 2016 IEEE Innovative Smart Grid Technologies-Asia (ISGT-Asia), 1076-1082, 2016 | 16 | 2016 |
Second-order cone relaxations of the Optimal Power Flow for active distribution grids L Bobo, A Venzke, S Chatzivasileiadis arXiv preprint arXiv:2001.00898, 2020 | 12 | 2020 |
Physics-informed neural networks for phase locked loop transient stability assessment R Nellikkath, I Murzakhanov, S Chatzivasileiadis, A Venzke, ... Electric Power Systems Research 236, 110790, 2024 | 6 | 2024 |