Artiklar med krav på offentlig åtkomst - Alain MiranvilleLäs mer
Inte tillgängliga någonstans: 8
On the Cahn-Hilliard-Oono-Navier-Stokes equations with singular potentials
A Miranville, R Temam
Applicable Analysis 95 (12), 2609-2624, 2016
Krav: US National Science Foundation
Long-time behavior of the Cahn–Hilliard equation with dynamic boundary condition
A Miranville, H Wu
Journal of Elliptic and Parabolic Equations 6, 283-309, 2020
Krav: National Natural Science Foundation of China
A QUASI-LINEAR HEAT TRANSMISSION PROBLEM IN A PERIODIC TWO-PHASE DILUTE COMPOSITE. A FUNCTIONAL ANALYTIC APPROACH.
ML De Cristoforis, P Musolino, A Miranville
Communications on Pure & Applied Analysis 13 (6), 2014
Krav: Government of Italy
Topological structure of the solution sets for a nonlinear delay evolution
RN Wang, ZX Ma, A Miranville
International Mathematics Research Notices 2022 (7), 4801-4889, 2022
Krav: National Natural Science Foundation of China
Nonlocal Cahn-Hilliard type model for image inpainting
D Jiang, M Azaiez, A Miranville, C Xu
Computers & Mathematics with Applications 159, 76-91, 2024
Krav: Agence Nationale de la Recherche
Higher-order diffusion and Cahn-Hilliard-type models revisited on the half-line
A Chatziafratis, A Miranville, G Karali, AS Fokas, EC Aifantis
Mathematical Models and Methods in Applied Sciences, 2025
Krav: European Commission
Hyperdissipative Navier–Stokes Equations Driven by Time-Dependent Forces: Invariant Manifolds
RN Wang, JC Zhao, A Miranville
SIAM Journal on Applied Dynamical Systems 22 (1), 199-234, 2023
Krav: National Natural Science Foundation of China
Partial differential model of lactate neuro-energetics: analytic results and numerical simulations
A Perrillat-Mercerot, A Miranville, A Agosti, E Rocca, P Ciarletta, ...
Mathematical Medicine and Biology: A Journal of the IMA 38 (2), 178-201, 2021
Krav: Government of Italy, AIRC Foundation for Cancer Research in Italy
Tillgängliga någonstans: 18
Uniqueness and regularity for the Navier--Stokes--Cahn--Hilliard system
A Giorgini, A Miranville, R Temam
SIAM Journal on Mathematical Analysis 51 (3), 2535-2574, 2019
Krav: US National Science Foundation, Fondazione Cariplo, Government of Italy
On the long time behavior of a tumor growth model
A Miranville, E Rocca, G Schimperna
Journal of Differential Equations 267 (4), 2616-2642, 2019
Krav: Fondazione Cariplo, Government of Italy
Exponential decay in one-dimensional type III thermoelasticity with voids
A Miranville, R Quintanilla
Applied Mathematics Letters 94, 30-37, 2019
Krav: Government of Spain
Exponential decay in one-dimensional type II thermoviscoelasticity with voids
A Miranville, R Quintanilla
Journal of Computational and Applied Mathematics 368, 112573, 2020
Krav: Government of Spain
Higher-order Cahn–Hilliard equations with dynamic boundary conditions
RM Mininni, A Miranville, S Romanelli
Journal of Mathematical Analysis and Applications 449 (2), 1321-1339, 2017
Krav: Government of Italy
A Caginalp phase-field system based on type III heat conduction with two temperatures
A Miranville, R Quintanilla
Quarterly of Applied Mathematics 74 (2), 375-398, 2016
Krav: Government of Spain
On the stability in phase-lag heat conduction with two temperatures
A Magaña, A Miranville, R Quintanilla
Journal of Evolution Equations 18, 1697-1712, 2018
Krav: Government of Spain
Exponential decay of solutions in type II porous-thermo-elasticity with quasi-static microvoids
A Magaña, A Miranville, R Quintanilla
Journal of Mathematical Analysis and Applications 492 (2), 124504, 2020
Krav: Government of Spain
On the Caginalp phase‐field systems with two temperatures and the Maxwell–Cattaneo law
A Miranville, R Quintanilla
Mathematical Methods in the Applied Sciences 39 (15), 4385-4397, 2016
Krav: Government of Spain
Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains
XG Yang, R Wang, X Yan, A Miranville
Discrete Contin. Dyn. Syst 41 (7), 3343-3366, 2021
Krav: National Natural Science Foundation of China
On a Caginalp phase-field system with two temperatures and memory
M Conti, S Gatti, A Miranville, R Quintanilla
Milan Journal of Mathematics 85, 1-27, 2017
Krav: Government of Italy
Energy stable finite element/spectral method for modified higher-order generalized Cahn–Hilliard equations
H Zhu, L Cherfils, A Miranville, S Peng, W Zhang
J. Math. Study 51 (3), 253-293, 2018
Krav: National Natural Science Foundation of China
Publikations- och finansieringsuppgifter tas fram automatiskt av ett datorprogram.