Stable blow up dynamics for energy supercritical wave equations R Donninger, B Schörkhuber Transactions of the American Mathematical Society 366 (4), 2167-2189, 2014 | 68 | 2014 |
Stable self-similar blow up for energy subcritical wave equations R Donninger, B Schörkhuber arXiv preprint arXiv:1201.4337, 2012 | 57 | 2012 |
On blowup in supercritical wave equations R Donninger, B Schörkhuber Communications in Mathematical Physics 346, 907-943, 2016 | 56 | 2016 |
Stable blowup for wave equations in odd space dimensions R Donninger, B Schörkhuber Annales de l'Institut Henri Poincaré C, Analyse non linéaire 34 (5), 1181-1213, 2017 | 41 | 2017 |
On stable self-similar blow up for equivariant wave maps: the linearized problem R Donninger, B Schörkhuber, PC Aichelburg Annales Henri Poincaré 13 (1), 103-144, 2012 | 39 | 2012 |
Flatness of semilinear parabolic PDEs—A generalized Cauchy–Kowalevski approach B Schörkhuber, T Meurer, A Jüngel IEEE Transactions on Automatic Control 58 (9), 2277-2291, 2013 | 25 | 2013 |
Co-dimension one stable blowup for the supercritical cubic wave equation I Glogić, B Schörkhuber Advances in Mathematics 390, 107930, 2021 | 24 | 2021 |
Stable blowup for the supercritical Yang–Mills heat flow R Donninger, B Schörkhuber Journal of Differential Geometry 113 (1), 55-94, 2019 | 21 | 2019 |
Hyperboloidal similarity coordinates and a globally stable blowup profile for supercritical wave maps P Biernat, R Donninger, B Schörkhuber International Mathematics Research Notices 2021 (21), 16530-16591, 2021 | 18 | 2021 |
Threshold for blowup for the supercritical cubic wave equation I Glogić, M Maliborski, B Schörkhuber Nonlinearity 33 (5), 2143, 2020 | 16 | 2020 |
Stable self-similar blowup in the supercritical heat flow of harmonic maps P Biernat, R Donninger, B Schörkhuber Calculus of Variations and Partial Differential Equations 56 (6), 171, 2017 | 12 | 2017 |
On blowup for the supercritical quadratic wave equation E Csobo, I Glogić, B Schörkhuber Analysis & PDE 17 (2), 617-680, 2024 | 10 | 2024 |
Nonlinear stability of homothetically shrinking Yang-Mills solitons in the equivariant case I Glogić, B Schörkhuber Communications in Partial Differential Equations 45 (8), 887-912, 2020 | 10 | 2020 |
A spectral mapping theorem for perturbed Ornstein–Uhlenbeck operators on L2 (Rd) R Donninger, B Schörkhuber Journal of Functional Analysis 268 (9), 2479-2524, 2015 | 10 | 2015 |
Stable blow up dynamics for energy supercritical wave equations. preprint R Donninger, B Schörkhuber arXiv preprint arXiv:1207.7046, 0 | 8 | |
Stable singularity formation for the keller–segel system in three dimensions I Glogić, B Schörkhuber Archive for Rational Mechanics and Analysis 248 (1), 4, 2024 | 7 | 2024 |
Co-dimension one stable blowup for the quadratic wave equation beyond the light cone PN Chen, R Donninger, I Glogić, M McNulty, B Schörkhuber Communications in Mathematical Physics 405 (2), 34, 2024 | 6 | 2024 |
Flatness-based trajectory planning for semilinear parabolic PDEs B Schörkhuber, T Meurer, A Jüngel 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 3538-3543, 2012 | 5 | 2012 |
Singularity formation for the higher dimensional Skyrme model in the strong field limit PN Chen, M McNulty, B Schörkhuber arXiv preprint arXiv:2310.07042, 2023 | 1 | 2023 |
Correction to: Stable Singularity Formation for the Keller-Segel System in Three Dimensions I Glogić, B Schörkhuber Archive for Rational Mechanics and Analysis 248 (4), 57, 2024 | | 2024 |