ติดตาม
Ciara Pike-Burke
Ciara Pike-Burke
ยืนยันอีเมลแล้วที่ imperial.ac.uk - หน้าแรก
ชื่อ
อ้างโดย
อ้างโดย
ปี
Bandits with delayed, aggregated anonymous feedback
C Pike-Burke, S Agrawal, C Szepesvari, S Grunewalder
International Conference on Machine Learning, 4105-4113, 2018
1392018
A unifying view of optimism in episodic reinforcement learning
G Neu, C Pike-Burke
Advances in Neural Information Processing Systems 33, 1392-1403, 2020
842020
Multi-objective optimization
C Pike-Burke
Report accessible through www. researchgate. net, 2019
742019
Recovering bandits
C Pike-Burke, S Grunewalder
Advances in Neural Information Processing Systems 32, 2019
512019
Local differential privacy for regret minimization in reinforcement learning
E Garcelon, V Perchet, C Pike-Burke, M Pirotta
Advances in Neural Information Processing Systems 34, 10561-10573, 2021
502021
Delayed feedback in generalised linear bandits revisited
B Howson, C Pike-Burke, S Filippi
International Conference on Artificial Intelligence and Statistics, 6095-6119, 2023
192023
Optimal convergence rate for exact policy mirror descent in discounted markov decision processes
E Johnson, C Pike-Burke, P Rebeschini
Advances in Neural Information Processing Systems 36, 76496-76524, 2023
172023
Delayed feedback in episodic reinforcement learning
B Howson, C Pike-Burke, S Filippi
arXiv preprint arXiv:2111.07615, 2021
122021
Delayed feedback in kernel bandits
S Vakili, D Ahmed, A Bernacchia, C Pike-Burke
International Conference on Machine Learning, 34779-34792, 2023
72023
Exact algorithms for the 0–1 time-bomb knapsack problem
M Monaci, C Pike-Burke, A Santini
Computers & Operations Research 145, 105848, 2022
72022
Optimism and delays in episodic reinforcement learning
B Howson, C Pike-Burke, S Filippi
International Conference on Artificial Intelligence and Statistics, 6061-6094, 2023
62023
Bandits with delayed anonymous feedback
C Pike-Burke, S Agrawal, C Szepesvari, S Grünewälder
stat 1050, 20, 2017
62017
Optimistic planning for the stochastic knapsack problem
C Pike-Burke, S Grunewalder
Artificial Intelligence and Statistics, 1114-1122, 2017
62017
Sample complexity of goal-conditioned hierarchical reinforcement learning
A Robert, C Pike-Burke, AA Faisal
Advances in Neural Information Processing Systems 36, 62696-62712, 2023
52023
Sample-efficiency in multi-batch reinforcement learning: The need for dimension-dependent adaptivity
E Johnson, C Pike-Burke, P Rebeschini
arXiv preprint arXiv:2310.01616, 2023
22023
Active learning for quantum mechanical measurements
R Zhu, C Pike-Burke, F Mintert
Physical Review A 109 (6), 062404, 2024
12024
Reinforcement learning with digital human models of varying visual characteristics
N Bhatia, CM Pike-Burke, EM Normando, OK Matar
Proceedings of the 7th International Digital Human Modeling Symposium 7 (1), 2022
12022
Bandit problems with fidelity rewards
G Lugosi, C Pike-Burke, PA Savalle
arXiv preprint arXiv:2111.13026, 2021
12021
When and why randomised exploration works (in linear bandits)
M Abeille, D Janz, C Pike-Burke
arXiv preprint arXiv:2502.08870, 2025
2025
Fixed-Budget Change Point Identification in Piecewise Constant Bandits
J Lazzaro, C Pike-Burke
arXiv preprint arXiv:2501.12957, 2025
2025
ระบบไม่สามารถดำเนินการได้ในขณะนี้ โปรดลองใหม่อีกครั้งในภายหลัง
บทความ 1–20