The ethical implications of generative audio models: A systematic literature review J Barnett Proceedings of the 2023 AAAI/ACM Conference on AI, Ethics, and Society, 146-161, 2023 | 36 | 2023 |
Crowdsourcing impacts: exploring the utility of crowds for anticipating societal impacts of algorithmic decision making J Barnett, N Diakopoulos Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Society, 56-67, 2022 | 16 | 2022 |
Exploring musical roots: Applying audio embeddings to empower influence attribution for a generative music model J Barnett, HF Garcia, B Pardo arXiv preprint arXiv:2401.14542, 2024 | 7 | 2024 |
Simulating Policy Impacts: Developing a Generative Scenario Writing Method to Evaluate the Perceived Effects of Regulation J Barnett, K Kieslich, N Diakopoulos Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society 7, 82-93, 2024 | 4 | 2024 |
Understanding gender biases and differences in web-based reviews of sanctioned physicians through a machine learning approach: Mixed methods study J Barnett, MV Bjarnadóttir, D Anderson, C Chen JMIR Formative Research 6 (9), e34902, 2022 | 3 | 2022 |
Envisioning Stakeholder-Action Pairs to Mitigate Negative Impacts of AI: A Participatory Approach to Inform Policy Making J Barnett, K Kieslich, N Helberger, N Diakopoulos arXiv preprint arXiv:2502.14869, 2025 | | 2025 |
Sound Check: Auditing Audio Datasets W Agnew, J Barnett, A Chu, R Hong, M Feffer, R Netzorg, HH Jiang, ... arXiv preprint arXiv:2410.13114, 2024 | | 2024 |
Text2FX: Harnessing CLAP Embeddings for Text-Guided Audio Effects A Chu, P O'Reilly, J Barnett, B Pardo arXiv preprint arXiv:2409.18847, 2024 | | 2024 |