Learning time-series shapelets J Grabocka, N Schilling, M Wistuba, L Schmidt-Thieme ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2014), 392-401, 2014 | 603 | 2014 |
Well-tuned Simple Nets Excel on Tabular Datasets A Kadra, M Lindauer, F Hutter, J Grabocka Neural Information Processing Systems (NeurIPS 2021), 2021 | 216 | 2021 |
Transformers Can Do Bayesian Inference S Müller, N Hollmann, SP Arango, J Grabocka, F Hutter International Conference on Learning Representations (ICLR 2022), 2021 | 179 | 2021 |
Ultra-fast shapelets for time series classification M Wistuba, J Grabocka, L Schmidt-Thieme arXiv preprint arXiv:1503.05018, 2015 | 100 | 2015 |
Hyp-rl: Hyperparameter optimization by reinforcement learning HS Jomaa, J Grabocka, L Schmidt-Thieme arXiv preprint arXiv:1906.11527, 2019 | 94 | 2019 |
Fast classification of univariate and multivariate time series through shapelet discovery J Grabocka, M Wistuba, L Schmidt-Thieme Knowledge and Information Systems (KAIS) 49 (2), 429-454, 2016 | 89 | 2016 |
Self-supervised learning for semi-supervised time series classification S Jawed, J Grabocka, L Schmidt-Thieme Advances in Knowledge Discovery and Data Mining: 24th Pacific-Asia …, 2020 | 87 | 2020 |
Personalized deep learning for tag recommendation HTH Nguyen, M Wistuba, J Grabocka, LR Drumond, L Schmidt-Thieme Advances in Knowledge Discovery and Data Mining: 21st Pacific-Asia …, 2017 | 85 | 2017 |
Few-shot Bayesian optimization with deep kernel surrogates M Wistuba, J Grabocka International Conference on Learning Representations (ICLR 2021), 2021 | 83 | 2021 |
Scalable Pareto Front Approximation for Deep Multi-Objective Learning M Ruchte, J Grabocka IEEE International Conference on Data Mining (ICDM 2021), 1306-1311, 2021 | 80* | 2021 |
Dataset2vec: Learning dataset meta-features HS Jomaa, L Schmidt-Thieme, J Grabocka Data Mining and Knowledge Discovery 35 (3), 964-985, 2021 | 72 | 2021 |
Regularization is all you need: Simple neural nets can excel on tabular data A Kadra, M Lindauer, F Hutter, J Grabocka arXiv preprint arXiv:2106.11189 536, 2021 | 64 | 2021 |
Learning DTW-shapelets for time-series classification M Shah, J Grabocka, N Schilling, M Wistuba, L Schmidt-Thieme IKDD Conference on Data Science, 2016, 1-8, 2016 | 60 | 2016 |
HPO-B: A Large-Scale Reproducible Benchmark for Black-Box HPO based on OpenML SP Arango, HS Jomaa, M Wistuba, J Grabocka Neural Information Processing Systems (NeurIPS 2021), Datasets and …, 2021 | 53* | 2021 |
Attribute-aware non-linear co-embeddings of graph features A Rashed, J Grabocka, L Schmidt-Thieme ACM Recommender Systems (RecSys), 314-321, 2019 | 51 | 2019 |
Learning surrogate losses J Grabocka, R Scholz, L Schmidt-Thieme arXiv preprint arXiv:1905.10108, 2019 | 51 | 2019 |
Latent time-series motifs J Grabocka, N Schilling, L Schmidt-Thieme ACM Transactions on Knowledge Discovery from Data (TKDD) 11 (1), 1-20, 2016 | 39 | 2016 |
Neuralwarp: Time-series similarity with warping networks J Grabocka, L Schmidt-Thieme arXiv preprint arXiv:1812.08306, 2018 | 33 | 2018 |
Scalable classification of repetitive time series through frequencies of local polynomials J Grabocka, M Wistuba, L Schmidt-Thieme IEEE Transactions on Knowledge and Data Engineering (TKDE) 27 (6), 1683-1695, 2014 | 26* | 2014 |
Supervising the Multi-Fidelity Race of Hyperparameter Configurations M Wistuba, A Kadra, J Grabocka Neural Information Processing Systems (NeurIPS 2022), 2022 | 25* | 2022 |