ติดตาม
Hao-Hsuan Chang
Hao-Hsuan Chang
Samsung Research America
ยืนยันอีเมลแล้วที่ vt.edu - หน้าแรก
ชื่อ
อ้างโดย
อ้างโดย
ปี
Distributive Dynamic Spectrum Access Through Deep Reinforcement Learning: A Reservoir Computing-Based Approach
HH Chang, H Song, Y Yi, J Zhang, H He, L Liu
IEEE Internet of Things Journal 6 (2), 1938-1948, 2018
2392018
Deep Residual Learning Meets OFDM Channel Estimation
L Li, H Chen, HH Chang, L Liu
IEEE Wireless Communications Letters 9 (5), 615-618, 2019
1382019
Deep echo state Q-network (DEQN) and its application in dynamic spectrum sharing for 5G and beyond
HH Chang, L Liu, Y Yi
IEEE Transactions on Neural Networks and Learning Systems 33 (3), 929-939, 2020
602020
Learning for detection: MIMO-OFDM symbol detection through downlink pilots
Z Zhou, L Liu, HH Chang
IEEE Transactions on Wireless Communications 19 (6), 3712-3726, 2020
602020
Accelerating Model-Free Reinforcement Learning With Imperfect Model Knowledge in Dynamic Spectrum Access
L Li, L Liu, J Bai, HH Chang, H Chen, JD Ashdown, J Zhang, Y Yi
IEEE Internet of Things Journal 7 (8), 7517-7528, 2020
272020
Decentralized deep reinforcement learning meets mobility load balancing
HH Chang, H Chen, J Zhang, L Liu
IEEE/ACM Transactions on Networking 31 (2), 473-484, 2022
232022
Federated multi-agent deep reinforcement learning (fed-madrl) for dynamic spectrum access
HH Chang, Y Song, TT Doan, L Liu
IEEE Transactions on Wireless Communications 22 (8), 5337-5348, 2023
192023
Resource Allocation for D2D Cellular Networks With QoS Constraints: A DC Programming-Based Approach
HH Chang, L Liu, J Bai, A Pidwerbetsky, A Berlinsky, J Huang, ...
IEEE Access 10, 16424-16438, 2021
92021
Deep Q-Network Based Power Allocation Meets Reservoir Computing in Distributed Dynamic Spectrum Access Networks
H Song, L Liu, HH Chang, J Ashdown, Y Yi
IEEE INFOCOM 2019-IEEE Conference on Computer Communications Workshops …, 2019
72019
Federated Dynamic Spectrum Access
Y Song, HH Chang, Z Zhou, S Jere, L Liu
arXiv preprint arXiv:2106.14976, 2021
62021
Federated Dynamic Spectrum Access through Multi-Agent Deep Reinforcement Learning
Y Song, HH Chang, L Liu
GLOBECOM 2022-2022 IEEE Global Communications Conference, 3466-3471, 2022
52022
Maximizing System Throughput in D2D Networks using Alternative DC Programming
HH Chang, L Liu, H Song, A Pidwerbetsky, A Berlinsky, J Ashdown, ...
IEEE Global Communications Conference, 2019
42019
Optimal preprocessing of WiFi CSI for sensing applications
VV Ratnam, H Chen, HH Chang, A Sehgal, J Zhang
IEEE Transactions on Wireless Communications, 2024
32024
MADRL Based Scheduling for 5G and Beyond
HH Chang, RBS Sree, H Chen, J Zhang, L Liu
MILCOM 2022-2022 IEEE Military Communications Conference (MILCOM), 873-878, 2022
32022
DRL meets DSA Networks: Convergence Analysis and Its Application to System Design
R Safavinejad, HH Chang, L Liu
arXiv preprint arXiv:2305.11237, 2023
22023
Intelligent DSA-assisted clustered IoT networks: neuromorphic computing meets genetic algorithm
Q Fan, J Bai, HH Chang, L Li, S Liu, J Huang, J Burgess, A Berlinsky, ...
Proceedings of the 7th ACM International Conference on Nanoscale Computing …, 2020
22020
Dyna-ESN: Efficient Deep Reinforcement Learning for Partially Observable Dynamic Spectrum Access
HH Chang, N Mohammadi, R Safavinejad, Y Yi, L Liu
IEEE Transactions on Wireless Communications, 2024
2024
Multi-antenna WiFi based breathing rate estimation
VV Ratnam, H Chen, A Sehgal, HH Chang
US Patent 12,160,298, 2024
2024
Wifi csi preprocessing for sensing applications
VV Ratnam, H Chen, A Sehgal, HH Chang, J Zhang
US Patent App. 18/429,209, 2024
2024
Deep Reinforcement Learning for Dynamic Spectrum Access: Convergence Analysis and System Design
R Safavinejad, HH Chang, L Liu
IEEE Transactions on Wireless Communications, 2024
2024
ระบบไม่สามารถดำเนินการได้ในขณะนี้ โปรดลองใหม่อีกครั้งในภายหลัง
บทความ 1–20