A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms Y Bengio, T Deleu, N Rahaman, R Ke, S Lachapelle, O Bilaniuk, A Goyal, ... International Conference on Learning Representations (ICLR 2020), 2019 | 421 | 2019 |
Gymnasium M Towers, JK Terry, A Kwiatkowski, JU Balis, G De Cola, T Deleu, ... Gymnasium", Mar, 2023 | 403* | 2023 |
Gradient-Based Neural DAG Learning S Lachapelle, P Brouillard, T Deleu, S Lacoste-Julien International Conference on Learning Representations (ICLR 2020), 2019 | 283 | 2019 |
Gflownet foundations Y Bengio, S Lahlou, T Deleu, EJ Hu, M Tiwari, E Bengio Journal of Machine Learning Research 24 (210), 1-55, 2023 | 238 | 2023 |
Bayesian structure learning with generative flow networks T Deleu, A Góis, C Emezue, M Rankawat, S Lacoste-Julien, S Bauer, ... Uncertainty in Artificial Intelligence, 518-528, 2022 | 148 | 2022 |
Torchmeta: A meta-learning library for pytorch T Deleu, T Würfl, M Samiei, JP Cohen, Y Bengio arXiv preprint arXiv:1909.06576, 2019 | 105 | 2019 |
A theory of continuous generative flow networks S Lahlou, T Deleu, P Lemos, D Zhang, A Volokhova, A Hernández-Garcıa, ... International Conference on Machine Learning, 18269-18300, 2023 | 85 | 2023 |
GFlowNets and variational inference N Malkin, S Lahlou, T Deleu, X Ji, E Hu, K Everett, D Zhang, Y Bengio arXiv preprint arXiv:2210.00580, 2022 | 83 | 2022 |
Gflownets for ai-driven scientific discovery M Jain, T Deleu, J Hartford, CH Liu, A Hernandez-Garcia, Y Bengio Digital Discovery 2 (3), 557-577, 2023 | 54 | 2023 |
Covi white paper H Alsdurf, E Belliveau, Y Bengio, T Deleu, P Gupta, D Ippolito, R Janda, ... arXiv preprint arXiv:2005.08502, 2020 | 48 | 2020 |
Joint Bayesian Inference of Graphical Structure and Parameters with a Single Generative Flow Network T Deleu, M Nishikawa-Toomey, J Subramanian, N Malkin, L Charlin, ... Neural Information Processing Systems 2023, 2023 | 46 | 2023 |
Synergies between disentanglement and sparsity: Generalization and identifiability in multi-task learning S Lachapelle, T Deleu, D Mahajan, I Mitliagkas, Y Bengio, ... International Conference on Machine Learning, 18171-18206, 2023 | 43 | 2023 |
Bayesian learning of causal structure and mechanisms with gflownets and variational bayes M Nishikawa-Toomey, T Deleu, J Subramanian, Y Bengio, L Charlin arXiv preprint arXiv:2211.02763, 2022 | 27 | 2022 |
The effects of negative adaptation in model-agnostic meta-learning T Deleu, Y Bengio arXiv preprint arXiv:1812.02159, 2018 | 27 | 2018 |
Continuous-Time Meta-Learning with Forward Mode Differentiation T Deleu, D Kanaa, L Feng, G Kerg, Y Bengio, G Lajoie, PL Bacon International Conference on Learning Representations (ICLR 2022), 2022 | 26 | 2022 |
Predicting infectiousness for proactive contact tracing Y Bengio, P Gupta, T Maharaj, N Rahaman, M Weiss, T Deleu, E Muller, ... arXiv preprint arXiv:2010.12536, 2020 | 23 | 2020 |
Curriculum in gradient-based meta-reinforcement learning B Mehta, T Deleu, SC Raparthy, CJ Pal, L Paull arXiv preprint arXiv:2002.07956, 2020 | 23 | 2020 |
Discrete probabilistic inference as control in multi-path environments T Deleu, P Nouri, N Malkin, D Precup, Y Bengio arXiv preprint arXiv:2402.10309, 2024 | 22 | 2024 |
Structured sparsity inducing adaptive optimizers for deep learning T Deleu, Y Bengio arXiv preprint arXiv:2102.03869, 2021 | 19 | 2021 |
Covi-agentsim: an agent-based model for evaluating methods of digital contact tracing P Gupta, T Maharaj, M Weiss, N Rahaman, H Alsdurf, A Sharma, ... arXiv preprint arXiv:2010.16004, 2020 | 13 | 2020 |