Reinforcement learning-based application autoscaling in the cloud: A survey Y Garí, DA Monge, E Pacini, C Mateos, CG Garino Engineering Applications of Artificial Intelligence 102, 104288, 2021 | 84 | 2021 |
Autoscaling Scientific Workflows on the Cloud by Combining On-demand and Spot Instances. DA Monge, Y Garí, C Mateos, CG Garino Computer Systems Science & Engineering 32 (4), 2017 | 20 | 2017 |
Learning budget assignment policies for autoscaling scientific workflows in the cloud Y Garí, DA Monge, C Mateos, C García Garino Cluster Computing 23, 87-105, 2020 | 16 | 2020 |
A Q-learning approach for the autoscaling of scientific workflows in the Cloud Y Garí, DA Monge, C Mateos Future Generation Computer Systems 127, 168-180, 2022 | 13 | 2022 |
A performance comparison of data-aware heuristics for scheduling jobs in mobile grids M Hirsch, C Mateos, JM Rodriguez, A Zunino, Y Garí, DA Monge 2017 XLIII Latin American Computer Conference (CLEI), 1-8, 2017 | 11 | 2017 |
Reinforcement learning-based autoscaling of workflows in the cloud: A survey Y Gari, DA Monge, E Pacini, C Mateos, CG Garino arXiv, 2020 | 7 | 2020 |
Online rl-based cloud autoscaling for scientific workflows: Evaluation of q-learning and sarsa Y Garí, E Pacini, L Robino, C Mateos, DA Monge Future Generation Computer Systems 157, 573-586, 2024 | 6 | 2024 |
Markov decision process to dynamically adapt spots instances ratio on the autoscaling of scientific workflows in the cloud Y Garí, DA Monge, C Mateos, C García Garino High Performance Computing: 4th Latin American Conference, CARLA 2017 …, 2018 | 6 | 2018 |
Autoescalado basado en aprendizaje profundo por refuerzo de workflows científicos en la nube E Pacini, CA Catania, Y Garí, LI Robino XXV Workshop de Investigadores en Ciencias de la Computación (Junín, 13 y 14 …, 2023 | | 2023 |