ติดตาม
Peter Dueben
Peter Dueben
Royal Society University Research Fellow at the European Weather Centre (ECMWF)
ยืนยันอีเมลแล้วที่ ecmwf.int - หน้าแรก
ชื่อ
อ้างโดย
อ้างโดย
ปี
WeatherBench: a benchmark data set for data‐driven weather forecasting
S Rasp, PD Dueben, S Scher, JA Weyn, S Mouatadid, N Thuerey
Journal of Advances in Modeling Earth Systems 12 (11), e2020MS002203, 2020
4982020
DYAMOND: the DYnamics of the Atmospheric general circulation Modeled On Non-hydrostatic Domains
B Stevens, M Satoh, L Auger, J Biercamp, CS Bretherton, X Chen, ...
Progress in Earth and Planetary Science 6 (1), 1-17, 2019
4542019
Challenges and design choices for global weather and climate models based on machine learning
PD Dueben, P Bauer
Geoscientific Model Development 11 (10), 3999-4009, 2018
3092018
Global cloud-resolving models
M Satoh, B Stevens, F Judt, M Khairoutdinov, SJ Lin, WM Putman, ...
Current Climate Change Reports 5, 172-184, 2019
2612019
The digital revolution of Earth-system science
P Bauer, PD Dueben, T Hoefler, T Quintino, TC Schulthess, NP Wedi
Nature Computational Science 1 (2), 104-113, 2021
2272021
Deep learning for post-processing ensemble weather forecasts
P Grönquist, C Yao, T Ben-Nun, N Dryden, P Dueben, S Li, T Hoefler
Philosophical Transactions of the Royal Society A 379 (2194), 20200092, 2021
1912021
Opportunities and challenges for machine learning in weather and climate modelling: hard, medium and soft AI
M Chantry, H Christensen, P Dueben, T Palmer
Philosophical Transactions of the Royal Society A 379 (2194), 20200083, 2021
1542021
Bridging observations, theory and numerical simulation of the ocean using machine learning
M Sonnewald, R Lguensat, DC Jones, PD Dueben, J Brajard, V Balaji
Environmental Research Letters 16 (7), 073008, 2021
1302021
A generative deep learning approach to stochastic downscaling of precipitation forecasts
L Harris, ATT McRae, M Chantry, PD Dueben, TN Palmer
Journal of Advances in Modeling Earth Systems 14 (10), e2022MS003120, 2022
1282022
Single precision in weather forecasting models: An evaluation with the IFS
F Váňa, P Düben, S Lang, T Palmer, M Leutbecher, D Salmond, G Carver
Monthly Weather Review 145 (2), 495-502, 2017
1162017
Neural general circulation models for weather and climate
D Kochkov, J Yuval, I Langmore, P Norgaard, J Smith, G Mooers, ...
Nature 632 (8027), 1060-1066, 2024
1122024
Weatherbench 2: A benchmark for the next generation of data‐driven global weather models
S Rasp, S Hoyer, A Merose, I Langmore, P Battaglia, T Russell, ...
Journal of Advances in Modeling Earth Systems 16 (6), e2023MS004019, 2024
1042024
A baseline for global weather and climate simulations at 1 km resolution
NP Wedi, I Polichtchouk, P Dueben, VG Anantharaj, P Bauer, S Boussetta, ...
Journal of Advances in Modeling Earth Systems 12 (11), e2020MS002192, 2020
1032020
Machine learning emulation of gravity wave drag in numerical weather forecasting
M Chantry, S Hatfield, P Dueben, I Polichtchouk, T Palmer
Journal of Advances in Modeling Earth Systems 13 (7), e2021MS002477, 2021
1012021
TRU-NET: a deep learning approach to high resolution prediction of rainfall
RA Adewoyin, P Dueben, P Watson, Y He, R Dutta
Machine Learning 110, 2035-2062, 2021
832021
Assessing the scales in numerical weather and climate predictions: will exascale be the rescue?
P Neumann, P Düben, P Adamidis, P Bauer, M Brück, L Kornblueh, ...
Philosophical Transactions of the Royal Society A 377 (2142), 20180148, 2019
822019
The use of imprecise processing to improve accuracy in weather & climate prediction
PD Düben, H McNamara, TN Palmer
Journal of Computational Physics 271, 2-18, 2014
762014
Building tangent‐linear and adjoint models for data assimilation with neural networks
S Hatfield, M Chantry, P Dueben, P Lopez, A Geer, T Palmer
Journal of Advances in Modeling Earth Systems 13 (9), e2021MS002521, 2021
672021
Challenges and design choices for global weather and climate models based on machine learning, Geoscientific Model Development, 11, 3999–4009
PD Dueben, P Bauer
gmd-11-3999-2018, 2018
672018
Challenges and benchmark datasets for machine learning in the atmospheric sciences: Definition, status, and outlook
PD Dueben, MG Schultz, M Chantry, DJ Gagne, DM Hall, A McGovern
Artificial Intelligence for the Earth Systems 1 (3), e210002, 2022
642022
ระบบไม่สามารถดำเนินการได้ในขณะนี้ โปรดลองใหม่อีกครั้งในภายหลัง
บทความ 1–20