ติดตาม
David A. Monge
David A. Monge
ยืนยันอีเมลแล้วที่ uncu.edu.ar
ชื่อ
อ้างโดย
อ้างโดย
ปี
Faaster, better, cheaper: The prospect of serverless scientific computing and hpc
J Spillner, C Mateos, DA Monge
Latin American High Performance Computing Conference, 154-168, 2017
1322017
Reinforcement learning-based application autoscaling in the cloud: A survey
Y Garí, DA Monge, E Pacini, C Mateos, CG Garino
Engineering Applications of Artificial Intelligence 102, 104288, 2021
892021
A Comparative Analysis of NSGA‐II and NSGA‐III for Autoscaling Parameter Sweep Experiments in the Cloud
V Yannibelli, E Pacini, D Monge, C Mateos, G Rodriguez
Scientific Programming 2020 (1), 4653204, 2020
352020
CMI: An online multi-objective genetic autoscaler for scientific and engineering workflows in cloud infrastructures with unreliable virtual machines
DA Monge, E Pacini, C Mateos, E Alba, CG Garino
Journal of Network and Computer Applications 149, 102464, 2020
272020
Ensemble learning of runtime prediction models for gene-expression analysis workflows
DA Monge, M Holec, F Železný, CG Garino
Cluster Computing 18, 1317-1329, 2015
252015
Meta-heuristic based autoscaling of cloud-based parameter sweep experiments with unreliable virtual machines instances
DA Monge, E Pacini, C Mateos, CG Garino
Computers & Electrical Engineering 69, 364-377, 2018
202018
Autoscaling Scientific Workflows on the Cloud by Combining On-demand and Spot Instances.
DA Monge, Y Garí, C Mateos, CG Garino
Computer Systems Science & Engineering 32 (4), 2017
202017
Sensibilidad de resultados del ensayo de tracción simple frente a diferentes tamaños y tipos de imperfecciones
C Careglio, D Monge, E Pacini, C Mateos, A Mirasso, CG Garino
Mecánica Computacional 29 (41), 4181-4197, 2010
192010
Learning budget assignment policies for autoscaling scientific workflows in the cloud
Y Garí, DA Monge, C Mateos, C García Garino
Cluster Computing 23, 87-105, 2020
162020
Adaptive spot-instances aware autoscaling for scientific workflows on the cloud
DA Monge, C García Garino
Latin American High Performance Computing Conference, 13-27, 2014
162014
A Q-learning approach for the autoscaling of scientific workflows in the Cloud
Y Garí, DA Monge, C Mateos
Future Generation Computer Systems 127, 168-180, 2022
132022
A performance comparison of data-aware heuristics for scheduling jobs in mobile grids
M Hirsch, C Mateos, JM Rodriguez, A Zunino, Y Garí, DA Monge
2017 XLIII Latin American Computer Conference (CLEI), 1-8, 2017
112017
Ensemble learning of run-time prediction models for data-intensive scientific workflows
DA Monge, M Holec, F Z̆elezný, C García Garino
High Performance Computing: First HPCLATAM-CLCAR Latin American Joint …, 2014
82014
A performance prediction module for workflow scheduling
DA Monge, J Bělohradský, C García Garino, F Železný
IV High-Performance Computing Symposium (HPC 2011)(XL JAIIO, Córdoba, 31 de …, 2011
72011
Online rl-based cloud autoscaling for scientific workflows: Evaluation of q-learning and sarsa
Y Garí, E Pacini, L Robino, C Mateos, DA Monge
Future Generation Computer Systems 157, 573-586, 2024
62024
Markov decision process to dynamically adapt spots instances ratio on the autoscaling of scientific workflows in the cloud
Y Garí, DA Monge, C Mateos, C García Garino
High Performance Computing: 4th Latin American Conference, CARLA 2017 …, 2018
62018
Improving Workflows Execution on DAGMan by a Perfomance-driven Scheduling Tool
DA Monge, C García Garino
High-Performance Computing Symposium (HPC 2010)-JAIIO 39 (UADE, 30 de agosto …, 2010
52010
Logos: Enabling local resource managers for the efficient support of data-intensive workflows within grid sites
DA Monge, CG Garino
Computing and Informatics 33 (1), 109-130, 2014
42014
Computational mechanics software as a service project
C García Garino, ER Pacini Naumovich, DA Monge Bosdari, CA Careglio, ...
ISTEC, 2013
42013
Template-based semi-automatic workflow construction for gene expression data analysis
J Bělohradský, D Monge, F Železný, M Holec, CG Garino
2011 24th International Symposium on Computer-Based Medical Systems (CBMS), 1-6, 2011
32011
ระบบไม่สามารถดำเนินการได้ในขณะนี้ โปรดลองใหม่อีกครั้งในภายหลัง
บทความ 1–20