Takip et
Liu Renke
Liu Renke
e.ntu.edu.sg üzerinde doğrulanmış e-posta adresine sahip
Başlık
Alıntı yapanlar
Alıntı yapanlar
Yıl
Deep reinforcement learning for dynamic scheduling of a flexible job shop
R Liu, R Piplani, C Toro
International Journal of Production Research 60 (13), 4049-4069, 2022
1562022
A deep multi-agent reinforcement learning approach to solve dynamic job shop scheduling problem
R Liu, R Piplani, C Toro
Computers & Operations Research 159, 106294, 2023
372023
Can China Achieve its CO2 Emission Mitigation Target in 2030: a System Dynamics Perspective.
L Zhang, Z Jiang, R Liu, M Tang, F Wu
Polish Journal of Environmental Studies 27 (6), 2018
172018
A review of dynamic scheduling: context, techniques and prospects
L Renke, R Piplani, C Toro
Implementing Industry 4.0: The Model Factory as the Key Enabler for the …, 2021
132021
Deep reinforcement learning-based dynamic scheduling
R Liu
Nanyang Technological University, 2022
12022
Sistem, işlemi şu anda gerçekleştiremiyor. Daha sonra yeniden deneyin.
Makaleler 1–5