Ensemble neuroevolution based approach for multivariate time series anomaly detection K Faber, D Żurek, M Pietroń, K Piętak Entropy, 2021, 2021 | 28 | 2021 |
WATCH: Wasserstein Change Point Detection for High-Dimensional Time Series Data K Faber, R Corizzo, B Sniezynski, M Baron, N Japkowicz 2021 IEEE International Conference on Big Data (Big Data), 4450-4459, 2021 | 24 | 2021 |
VLAD: Task-agnostic VAE-based lifelong anomaly detection K Faber, R Corizzo, B Sniezynski, N Japkowicz Neural Networks 165 (1), 2023 | 20 | 2023 |
Lifelong Continual Learning for Anomaly Detection: New Challenges, Perspectives, and Insights K Faber, R Corizzo, B Sniezynski, N Japkowicz IEEE Access 12, 41364-41380, 2024 | 17 | 2024 |
Autoencoder-based IDS for cloud and mobile devices K Faber, L Faber, B Sniezynski 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet …, 2021 | 16 | 2021 |
Active Lifelong Anomaly Detection with Experience Replay K Faber, R Corizzo, B Sniezynski, N Japkowicz 2022 IEEE 9th International Conference on Data Science and Advanced …, 2022 | 13 | 2022 |
LIFEWATCH: Lifelong Wasserstein Change Point Detection K Faber, R Corizzo, B Sniezynski, M Baron, N Japkowicz 2022 International Joint Conference on Neural Networks (IJCNN), 1-8, 2022 | 13 | 2022 |
From MNIST to ImageNet and back: benchmarking continual curriculum learning K Faber, D Zurek, M Pietron, N Japkowicz, A Vergari, R Corizzo Machine Learning 113 (10), 8137-8164, 2024 | 9 | 2024 |
Distributed Continual Intrusion Detection: A Collaborative Replay Framework K Faber, B Sniezynski, R Corizzo 2023 IEEE International Conference on Big Data (BigData), 3255-3263, 2023 | 5 | 2023 |
Ada-QPacknet – Multi-Task Forget-Free Continual Learning with Quantization Driven Adaptive Pruning M Pietron, D Zurek, K Faber, R Corizzo 26th European Conference on Artificial Intelligence, ECAI 2023, 1882-1889, 2023 | 5* | 2023 |
AD-NEv: A Scalable Multilevel Neuroevolution Framework for Multivariate Anomaly Detection M Pietroń, D Żurek, K Faber, R Corizzo IEEE Transactions on Neural Networks and Learning Systems, 2024 | 3 | 2024 |
System design for an integrated lifelong reinforcement learning agent for real-time strategy games I Sur, Z Daniels, A Rahman, K Faber, G Gallardo, T Hayes, C Taylor, ... Proceedings of the Second International Conference on AI-ML Systems, 1-9, 2022 | 2 | 2022 |
Towards efficient deep autoencoders for multivariate time series anomaly detection M Pietroń, D Żurek, K Faber, R Corizzo International Conference on Computational Science, 461-469, 2024 | 1 | 2024 |
pyCLAD: The universal framework for continual lifelong anomaly detection K Faber, B Sniezynski, N Japkowicz, R Corizzo SoftwareX 29, 101994, 2025 | | 2025 |
RLEM: Deep Reinforcement Learning Ensemble Method for Aircraft Recovery Problem D Żurek, M Pietroń, S Piórkowski, M Karwatowski, K Faber 2024 IEEE International Conference on Big Data (BigData), 2932-2938, 2024 | | 2024 |
AD-NEv++-The multi-architecture neuroevolution-based multivariate anomaly detection framework M Pietroń, D Żurek, K Faber, A Wójcik, R Corizzo Proceedings of the Genetic and Evolutionary Computation Conference Companion …, 2024 | | 2024 |
Transformed-*: A domain-incremental lifelong learning scenario generation framework D Zurek, R Corizzo, M Karwatowski, M Pietron, K Faber 2023 International Joint Conference on Neural Networks (IJCNN), 1-10, 2023 | | 2023 |
A Deep Double Q-Learning as a SDLS support in solving LABS problem D Żurek, M Pietroń, K Pietak, K Faber | | |