Disentangled graph collaborative filtering X Wang, H Jin, A Zhang, X He, T Xu, TS Chua Proceedings of the 43rd international ACM SIGIR conference on research and …, 2020 | 613 | 2020 |
Discovering invariant rationales for graph neural networks YX Wu, X Wang, A Zhang, X He, TS Chua arXiv preprint arXiv:2201.12872, 2022 | 291 | 2022 |
Let invariant rationale discovery inspire graph contrastive learning S Li, X Wang, A Zhang, Y Wu, X He, TS Chua International conference on machine learning, 13052-13065, 2022 | 125 | 2022 |
On generative agents in recommendation A Zhang, Y Chen, L Sheng, X Wang, TS Chua Proceedings of the 47th international ACM SIGIR conference on research and …, 2024 | 101 | 2024 |
Towards multi-grained explainability for graph neural networks X Wang, Y Wu, A Zhang, X He, TS Chua Advances in neural information processing systems 34, 18446-18458, 2021 | 97 | 2021 |
CrossCBR: cross-view contrastive learning for bundle recommendation Y Ma, Y He, A Zhang, X Wang, TS Chua Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and …, 2022 | 94 | 2022 |
Reinforced causal explainer for graph neural networks X Wang, Y Wu, A Zhang, F Feng, X He, TS Chua IEEE Transactions on Pattern Analysis and Machine Intelligence 45 (2), 2297-2309, 2022 | 59 | 2022 |
Incorporating Bias-aware Margins into Contrastive Loss for Collaborative Filtering A Zhang, W Ma, X Wang, TS Chua Thirty-sixth Conference on Neural Information Processing Systems, 2022 | 55 | 2022 |
Invariant Collaborative Filtering to Popularity Distribution Shift A Zhang, J Zheng, X Wang, Y Yuan, TS ChuI arXiv preprint arXiv:2302.05328, 2023 | 43 | 2023 |
Large language model can interpret latent space of sequential recommender Z Yang, J Wu, Y Luo, J Zhang, Y Yuan, A Zhang, X Wang, X He arXiv preprint arXiv:2310.20487, 2023 | 36 | 2023 |
Cooperative explanations of graph neural networks J Fang, X Wang, A Zhang, Z Liu, X He, TS Chua Proceedings of the Sixteenth ACM International Conference on Web Search and …, 2023 | 34 | 2023 |
Evaluating post-hoc explanations for graph neural networks via robustness analysis J Fang, W Liu, Y Gao, Z Liu, A Zhang, X Wang, X He Advances in neural information processing systems 36, 72446-72463, 2023 | 32 | 2023 |
Causal screening to interpret graph neural networks X Wang, Y Wu, A Zhang, X He, T Chua | 31* | 2021 |
Rethinking tokenizer and decoder in masked graph modeling for molecules Z Liu, Y Shi, A Zhang, E Zhang, K Kawaguchi, X Wang, TS Chua Advances in Neural Information Processing Systems 36, 25854-25875, 2023 | 29 | 2023 |
Empowering collaborative filtering with principled adversarial contrastive loss A Zhang, L Sheng, Z Cai, X Wang, TS Chua Advances in Neural Information Processing Systems 36, 6242-6266, 2023 | 27 | 2023 |
Relm: Leveraging language models for enhanced chemical reaction prediction Y Shi, A Zhang, E Zhang, Z Liu, X Wang arXiv preprint arXiv:2310.13590, 2023 | 25 | 2023 |
Online distillation-enhanced multi-modal transformer for sequential recommendation W Ji, X Liu, A Zhang, Y Wei, Y Ni, X Wang Proceedings of the 31st ACM International Conference on Multimedia, 955-965, 2023 | 18 | 2023 |
Deconfounding to explanation evaluation in graph neural networks YX Wu, X Wang, A Zhang, X Hu, F Feng, X He, TS Chua arXiv preprint arXiv:2201.08802, 2022 | 18 | 2022 |
Robust collaborative filtering to popularity distribution shift A Zhang, W Ma, J Zheng, X Wang, TS Chua ACM Transactions on Information Systems 42 (3), 1-25, 2024 | 17 | 2024 |
Redundancy-aware transformer for video question answering Y Li, X Yang, A Zhang, C Feng, X Wang, TS Chua Proceedings of the 31st ACM International Conference on Multimedia, 3172-3180, 2023 | 17 | 2023 |