Підписатись
Courtney Paquette
Courtney Paquette
Google Research, Brain Team
Підтверджена електронна адреса в u.washington.edu - Домашня сторінка
Назва
Посилання
Посилання
Рік
Efficiency of minimizing compositions of convex functions and smooth maps
D Drusvyatskiy, C Paquette
Mathematical Programming 178, 503-558, 2019
2572019
Subgradient methods for sharp weakly convex functions
D Davis, D Drusvyatskiy, KJ MacPhee, C Paquette
Journal of Optimization Theory and Applications 179, 962-982, 2018
1302018
The nonsmooth landscape of phase retrieval
D Davis, D Drusvyatskiy, C Paquette
IMA Journal of Numerical Analysis 40 (4), 2652-2695, 2020
1182020
A stochastic line search method with expected complexity analysis
C Paquette, K Scheinberg
SIAM Journal on Optimization 30 (1), 349-376, 2020
1172020
Catalyst for gradient-based nonconvex optimization
C Paquette, H Lin, D Drusvyatskiy, J Mairal, Z Harchaoui
International Conference on Artificial Intelligence and Statistics, 613-622, 2018
662018
Sgd in the large: Average-case analysis, asymptotics, and stepsize criticality
C Paquette, K Lee, F Pedregosa, E Paquette
Conference on Learning Theory, 3548-3626, 2021
522021
A stochastic line search method with convergence rate analysis
C Paquette, K Scheinberg
arXiv preprint arXiv:1807.07994, 2018
512018
Catalyst acceleration for gradient-based non-convex optimization
C Paquette, H Lin, D Drusvyatskiy, J Mairal, Z Harchaoui
arXiv preprint arXiv:1703.10993, 2017
412017
Halting time is predictable for large models: A universality property and average-case analysis
C Paquette, B van Merriënboer, E Paquette, F Pedregosa
Foundations of Computational Mathematics 23 (2), 597-673, 2023
382023
Dynamics of stochastic momentum methods on large-scale, quadratic models
C Paquette, E Paquette
Advances in Neural Information Processing Systems 34, 9229-9240, 2021
292021
Homogenization of SGD in high-dimensions: Exact dynamics and generalization properties
C Paquette, E Paquette, B Adlam, J Pennington
Mathematical Programming, 1-90, 2024
252024
Variational analysis of spectral functions simplified
D Drusvyatskiy, C Kempton
arXiv preprint arXiv:1506.05170, 2015
242015
Hitting the high-dimensional notes: An ode for sgd learning dynamics on glms and multi-index models
E Collins-Woodfin, C Paquette, E Paquette, I Seroussi
Information and Inference: A Journal of the IMA 13 (4), iaae028, 2024
192024
Implicit regularization or implicit conditioning? exact risk trajectories of sgd in high dimensions
C Paquette, E Paquette, B Adlam, J Pennington
Advances in Neural Information Processing Systems 35, 35984-35999, 2022
192022
Trajectory of mini-batch momentum: Batch size saturation and convergence in high dimensions
K Lee, A Cheng, E Paquette, C Paquette
Advances in Neural Information Processing Systems 35, 36944-36957, 2022
192022
4+ 3 phases of compute-optimal neural scaling laws
E Paquette, C Paquette, L Xiao, J Pennington
arXiv preprint arXiv:2405.15074, 2024
142024
Implicit diffusion: Efficient optimization through stochastic sampling
P Marion, A Korba, P Bartlett, M Blondel, V De Bortoli, A Doucet, ...
arXiv preprint arXiv:2402.05468, 2024
122024
Only tails matter: Average-case universality and robustness in the convex regime
L Cunha, G Gidel, F Pedregosa, D Scieur, C Paquette
International Conference on Machine Learning, 4474-4491, 2022
102022
Mirror descent algorithms with nearly dimension-independent rates for differentially-private stochastic saddle-point problems
T González, C Guzmán, C Paquette
arXiv preprint arXiv:2403.02912, 2024
42024
The high line: Exact risk and learning rate curves of stochastic adaptive learning rate algorithms
E Collins-Woodfin, I Seroussi, BG Malaxechebarría, AW Mackenzie, ...
arXiv preprint arXiv:2405.19585, 2024
32024
У даний момент система не може виконати операцію. Спробуйте пізніше.
Статті 1–20