Підписатись
Chang Zhou
Chang Zhou
Peking University (zhouchang@pku.edu.cn)
Підтверджена електронна адреса в pku.edu.cn
Назва
Посилання
Посилання
Рік
Qwen Technical Report
J Bai, S Bai, Y Chu, Z Cui, K Dang, X Deng, Y Fan, W Ge, Y Han, F Huang, ...
https://arxiv.org/abs/2309.16609, 2023
24822023
Deep Interest Evolution Network for Click-Through Rate Prediction
G Zhou, N Mou, Y Fan, Q Pi, W Bian, C Zhou, X Zhu, K Gai
AAAI 2019, 2019
11602019
OFA: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework
P Wang, A Yang, R Men, J Lin, S Bai, Z Li, J Ma, C Zhou*, J Zhou, H Yang
ICML 2022, 2022
11302022
Qwen-VL: A Versatile Vision-Language Model for Understanding, Localization, Text Reading, and Beyond
J Bai*, S Bai*, S Yang*, S Wang, S Tan, P Wang, J Lin, C Zhou*, J Zhou
arXiv preprint arXiv:2308.12966, 2023
1072*2023
Qwen2 technical report
A Yang, B Yang, B Hui, B Zheng, B Yu, C Zhou, C Li, C Li, D Liu, F Huang, ...
arXiv preprint arXiv:2407.10671, 2024
9832024
CogView: Mastering Text-to-Image Generation via Transformers
M Ding, Z Yang, W Hong, W Zheng, C Zhou, D Yin, J Lin, X Zou, Z Shao, ...
NeurIPS 2021, 2021
7972021
Qwen2-VL: Enhancing Vision-Language Model's Perception of the World at Any Resolution
P Wang, S Bai, S Tan, S Wang, Z Fan, J Bai, K Chen, X Liu, J Wang, W Ge, ...
arXiv preprint arXiv:2409.12191, 2024
460*2024
Learning Disentangled Representations for Recommendation
J Ma*, C Zhou*, P Cui, H Yang, W Zhu
NeurIPS 2019, 2019
3912019
ATRank: An Attention-Based User Behavior Modeling Framework for Recommendation
C Zhou, J Bai, J Song, X Liu, Z Zhao, X Chen, J Gao
AAAI 2018, 2017
3572017
AliGraph: A Comprehensive Graph Neural Network Platform
R Zhu, K Zhao, H Yang, W Lin, C Zhou, B Ai, Y Li, J Zhou
VLDB 2019, 2019
3452019
Are we really making much progress? Revisiting, benchmarking, and refining heterogeneous graph neural networks
Q Lv, M Ding, Q Liu, Y Chen, W Feng, S He, C Zhou, J Jiang, Y Dong, ...
KDD 2021, 2021
3412021
Controllable Multi-Interest Framework for Recommendation
Y Cen, J Zhang, X Zou, C Zhou, H Yang, J Tang
KDD 2020, 2020
3042020
Cognitive Graph for Multi-Hop Reading Comprehension at Scale
M Ding, C Zhou, Q Chen, H Yang, J Tang
ACL 2019, 2019
3012019
Scalable graph embedding for asymmetric proximity
C Zhou, Y Liu, X Liu, Z Liu, J Gao
AAAI 2017 31 (1), 2017
2492017
Disentangled Self-Supervision in Sequential Recommenders
J Ma, C Zhou, H Yang, P Cui, X Wang, W Zhu
KDD 2020, 2020
2392020
Qwen-Audio: Advancing Universal Audio Understanding via Unified Large-Scale Audio-Language Models
Y Chu*, J Xu*, X Zhou*, Q Yang, S Zhang, Z Yan, C Zhou*, J Zhou
arXiv preprint arXiv:2311.07919, 2023
2372023
Understanding Negative Sampling in Graph Representation Learning
Z Yang, M Ding, C Zhou, H Yang, J Zhou, J Tang
KDD 2020, 2020
2182020
Scaling Relationship on Learning Mathematical Reasoning with Large Language Models
Z Yuan*, H Yuan*, C Li, G Dong, C Tan, C Zhou, J Zhou
arXiv preprint arXiv:2308.01825, 2023
1982023
M6-Rec: Generative Pretrained Language Models are Open-Ended Recommender Systems
Z Cui∗, J Ma∗, C Zhou, J Zhou, H Yang
https://arxiv.org/abs/2205.08084, 2022
1932022
CogLTX: Applying BERT to Long Texts
M Ding, C Zhou, H Yang, J Tang
NeurIPS 2020, 2020
1802020
У даний момент система не може виконати операцію. Спробуйте пізніше.
Статті 1–20