Підписатись
Boris van Breugel
Boris van Breugel
Senior ML Researcher, Qualcomm | PhD candidate, University of Cambridge
Підтверджена електронна адреса в cam.ac.uk
Назва
Посилання
Посилання
Рік
How faithful is your synthetic data? Sample-level metrics for evaluating and auditing generative models
A Alaa, B Van Breugel, ES Saveliev, M van der Schaar
International Conference on Machine Learning, 290-306, 2022
2272022
DECAF: Generating fair synthetic data using causally-aware generative networks
B Van Breugel, T Kyono, J Berrevoets, M Van der Schaar
Advances in Neural Information Processing Systems 34, 22221-22233, 2021
1192021
Stereotype and skew: Quantifying gender bias in pre-trained and fine-tuned language models
DV Manela, D Errington, T Fisher, B van Breugel, P Minervini
arXiv preprint arXiv:2101.09688, 2021
1042021
Membership Inference Attacks against Synthetic Data through Overfitting Detection
B van Breugel, H Sun, Z Qian, M van der Schaar
Proceedings of the 26th International Conference on Artificial Intelligence …, 2023
482023
Synthetic Data, Real Errors: How (Not) to Publish and Use Synthetic Data
B van Breugel, Z Qian, M van der Schaar
Proceedings of the 40th International Conference on Machine Learning 202 …, 2023
392023
Beyond Privacy: Navigating the Opportunities and Challenges of Synthetic Data
B van Breugel, M van der Schaar
arXiv preprint arXiv:2304.03722, 2023
282023
Why Tabular Foundation Models Should Be a Research Priority
B van Breugel, M van der Schaar
International Conference on Machine Learning, 2024
262024
Curated LLM: Synergy of LLMs and Data Curation for tabular augmentation in low-data regimes
N Seedat, N Huynh, B van Breugel, M van der Schaar
Forty-first International Conference on Machine Learning, 2024
22*2024
Can You Rely on Your Model Evaluation? Improving Model Evaluation with Synthetic Test Data
B van Breugel, N Seedat, F Imrie, M van der Schaar
Advances in Neural Information Processing Systems 36, 2023
192023
How faithful is your synthetic data
AM Alaa, B van Breugel, E Saveliev, M van der Schaar
Sample-level Metrics for Evaluating and Auditing Generative Models, 2022
142022
What is Flagged in Uncertainty Quantification? Latent Density Models for Uncertainty Categorization
H Sun, B van Breugel, J Crabbé, N Seedat, M van der Schaar
Advances in Neural Information Processing Systems 36, 2023
9*2023
Synthetic data in biomedicine via generative artificial intelligence
B van Breugel, T Liu, D Oglic, M van der Schaar
Nature Reviews Bioengineering 2 (12), 991-1004, 2024
62024
RadEdit: stress-testing biomedical vision models via diffusion image editing
F Pérez-García, S Bond-Taylor, PP Sanchez, B van Breugel, DC Castro, ...
European Conference on Computer Vision, 2024
62024
Decaf: generating fair synthetic data using causally-aware generative networks
T Kyono, B van Breugel, J Berrevoets, M van der Schaar
NeurIPS. cc, 1-13, 2021
32021
Soft Mixture Denoising: Beyond the Expressive Bottleneck of Diffusion Models
Y Li, B van Breugel, M van der Schaar
International Conference on Learning Representations, 2024
22024
Practical Approaches for Fair Learning with Multitype and Multivariate Sensitive Attributes
T Liu, AJ Chan, B van Breugel, M van der Schaar
NeurIPS 2022 Workshop on Algorithmic Fairness through the Lens of Causality …, 2022
22022
LaTable: Towards Large Tabular Models
B van Breugel, J Crabbé, R Davis, M van der Schaar
arXiv preprint arXiv:2406.17673, 2024
2024
The Spherical Grasshopper Problem
B van Breugel
arXiv preprint arXiv:2307.05359, 2023
2023
У даний момент система не може виконати операцію. Спробуйте пізніше.
Статті 1–18