Підписатись
Nadav Hallak
Nadav Hallak
Assistant Professor, The Technion
Підтверджена електронна адреса в technion.ac.il - Домашня сторінка
Назва
Посилання
Посилання
Рік
On the almost sure convergence of stochastic gradient descent in non-convex problems
P Mertikopoulos, N Hallak, A Kavis, V Cevher
Advances in Neural Information Processing Systems 33, 1117-1128, 2020
1172020
On the minimization over sparse symmetric sets: projections, optimality conditions, and algorithms
A Beck, N Hallak
Mathematics of Operations Research 41 (1), 196-223, 2016
692016
Optimization problems involving group sparsity terms
A Beck, N Hallak
Mathematical Programming 178, 39-67, 2019
462019
Proximal mapping for symmetric penalty and sparsity
A Beck, N Hallak
SIAM Journal on Optimization 28 (1), 496-527, 2018
352018
Regret minimization in stochastic non-convex learning via a proximal-gradient approach
N Hallak, P Mertikopoulos, V Cevher
International Conference on Machine Learning, 4008-4017, 2021
282021
A dynamic alternating direction of multipliers for nonconvex minimization with nonlinear functional equality constraints
E Cohen, N Hallak, M Teboulle
Journal of Optimization Theory and Applications, 1-30, 2022
242022
On the convergence to stationary points of deterministic and randomized feasible descent directions methods
A Beck, N Hallak
SIAM Journal on Optimization 30 (1), 56-79, 2020
242020
Finding second-order stationary points in constrained minimization: A feasible direction approach
N Hallak, M Teboulle
Journal of Optimization Theory and Applications 186, 480-503, 2020
122020
An adaptive Lagrangian-based scheme for nonconvex composite optimization
N Hallak, M Teboulle
Mathematics of Operations Research 48 (4), 2337-2352, 2023
102023
On the minimization over sparse symmetric sets
A Beck, N Hallak
Optimisation Online repository, 2014
72014
Efficient Proximal Mapping of the 1-path-norm of Shallow Networks
F Latorre, P Rolland, N Hallak, V Cevher
International Conference on Machine Learning, 5651-5661, 2020
42020
A non-Euclidean gradient descent method with sketching for unconstrained matrix minimization
N Hallak, M Teboulle
Operations Research Letters 47 (5), 421-426, 2019
32019
The regularized feasible directions method for nonconvex optimization
A Beck, N Hallak
Operations Research Letters 50 (5), 517-523, 2022
22022
A path-based approach to constrained sparse optimization
N Hallak
SIAM Journal on Optimization 34 (1), 790-816, 2024
12024
1-Path-Norm Regularization of Deep Neural Networks
F Latorre, A Bonnet, P Rolland, N Hallak, V Cevher
LatinX in AI Workshop at ICML 2023 (Regular Deadline), 2023
12023
An Augmented Lagrangian Approach for Problems With Random Matrix Composite Structure
D Greenstein, N Hallak
arXiv preprint arXiv:2305.01055, 2023
12023
An Augmented Lagrangian Approach to Bi-Level Optimization via an Equilibrium Constrained Problem
N Hallak, N Suissa
2025
A study of first-order methods with a deterministic relative-error gradient Oracle
N Hallak, KY Levy
Forty-first International Conference on Machine Learning, 2024
2024
У даний момент система не може виконати операцію. Спробуйте пізніше.
Статті 1–18