Enhancing carbon dioxide gas-diffusion electrolysis by creating a hydrophobic catalyst microenvironment Z Xing, L Hu, DS Ripatti, X Hu, X Feng Nature communications 12 (1), 136, 2021 | 466 | 2021 |
Carbon monoxide gas diffusion electrolysis that produces concentrated C2 products with high single-pass conversion DS Ripatti, TR Veltman, MW Kanan Joule 3 (1), 240-256, 2019 | 308 | 2019 |
Comparative measure of the electronic influence of highly substituted aryl isocyanides AE Carpenter, CC Mokhtarzadeh, DS Ripatti, I Havrylyuk, R Kamezawa, ... Inorganic Chemistry 54 (6), 2936-2944, 2015 | 83 | 2015 |
Chloro- and Trifluoromethyl-Substituted Flanking-Ring m-Terphenyl Isocyanides: η6-Arene Binding to Zero-Valent Molybdenum Centers and Comparison to Alkyl … TB Ditri, AE Carpenter, DS Ripatti, CE Moore, AL Rheingold, JS Figueroa Inorganic Chemistry 52 (22), 13216-13229, 2013 | 43 | 2013 |
Improving the energy efficiency of CO electrolysis by controlling Cu domain size in gas diffusion electrodes JA Rabinowitz, DS Ripatti, RG Mariano, MW Kanan ACS Energy Letters 7 (11), 4098-4105, 2022 | 19 | 2022 |
Carbon monoxide gas diffusion electrolysis that produces concentrated C2 products with high single-pass conversion. Joule 3, 240–256 DS Ripatti, TR Veltman, MW Kanan | 9 | 2019 |
Electrochemical cells and cathodes for the production of concentrated product streams from the reduction of CO and/or CO2 MW Kanan, DS Ripatti, TR Veltman US Patent 11,479,871, 2022 | 5 | 2022 |
Carbon Monoxide Gas Diffusion Electrolysis That Produces Concentrated C2 Products with High Single-Pass Conversion. Joule 2019, 3 (1), 240–256 DS Ripatti, TR Veltman, MW Kanan | 5 | |
Microplastics & The Textile Industry ASGDR Davis Lee, Erin Kirkpatrick Textile World, 2020 | | 2020 |
Nanostructured Cu Electrodes for Energy-Efficient Conversion of CO2 to Fuel MW Kanan, C Li, A Yau, D Ripatti, X Feng, C Li | | |