Підписатись
Arpan Mukherjee
Arpan Mukherjee
Research Scientist, University at Buffalo
Підтверджена електронна адреса в buffalo.edu
Назва
Посилання
Посилання
Рік
An Algorithm for Many-Objective Optimization with Reduced Objective Computations: A Study in Differential Evolution
S Bandyopadhyay, A Mukherjee
Evolutionary Computation, IEEE Transactions on 19 (3), 2014
1342014
Deep learning model for identifying critical structural motifs in potential endocrine disruptors
A Mukherjee, A Su, K Rajan
Journal of chemical information and modeling 61 (5), 2187-2197, 2021
332021
Deep learning based prediction of perovskite lattice parameters from hirshfeld surface fingerprints
L Williams, A Mukherjee, K Rajan
The Journal of Physical Chemistry Letters 11 (17), 7462-7468, 2020
222020
Quantum signatures for screening metavalent solids
D Giri, L Williams, A Mukherjee, K Rajan
The Journal of Chemical Physics 154 (12), 2021
112021
Monitoring the role of site chemistry on the formation energy of perovskites via deep learning analysis of Hirshfeld surfaces
L Williams, A Mukherjee, A Dasgupta, K Rajan
Journal of Materials Chemistry C 9 (34), 11153-11162, 2021
112021
Laplacian graph based approach for uncertainty quantification of large scale dynamical systems
A Mukherjee, R Rai, P Singla, T Singh, A Patra
2015 American Control Conference (ACC), 3998-4003, 2015
72015
Comparison of linearization and graph clustering methods for uncertainty quantification of large scale dynamical systems
A Mukherjee, R Rai, P Singla, T Singh, A Patra
International Journal for Uncertainty Quantification 7 (1), 2017
62017
Informatics driven materials innovation for a regenerative economy: harnessing nlp for safer chemistry in manufacturing of solar cells
D Giri, A Mukherjee, K Rajan
REWAS 2022: Developing Tomorrow’s Technical Cycles (Volume I), 11-19, 2022
42022
Non-negative matrix factorization based uncertainty quantification method for complex networked systems
A Mukherjee, R Rai, P Singla, T Singh, A Patra
International Design Engineering Technical Conferences and Computers and …, 2015
42015
Machine Learning-Aided Property Prediction of Hybrid Organic–Inorganic Perovskites Using Hirshfeld Surface Representations of Crystal Structures
L Williams, A Mukherjee, R Dongol, K Rajan
The Journal of Physical Chemistry C 127 (24), 11672-11682, 2023
32023
Overlapping clustering based technique for scalable uncertainty quantification in physical systems
A Mukherjee, R Rai, P Singla, T Singh, A Patra
SIAM/ASA Journal on Uncertainty Quantification 8 (3), 827-859, 2020
3*2020
Effect of dem uncertainty on geophysical mass flow via identification of strongly coupled subsystem
A Mukherjee, R Rai, P Singla, T Singh, A Patra
International Journal for Uncertainty Quantification 9 (6), 2019
22019
Exploring structure–property relationships in sparse data environments using mixture-of-experts models
AA Cheenady, A Mukherjee, R Dongol, K Rajan
MRS Bulletin, 1-12, 2024
12024
Uncertainty informed screening for safer solvents used in the synthesis of perovskite based solar cells via machine learning
D Giri, A Mukherjee, K Rajan
12022
Modularity optimization for enhancing edge detection in microstructural features using 3D atomic chemical scale imaging
A Mukherjee, S Broderick, K Rajan
Journal of Vacuum Science & Technology A 38 (3), 2020
12020
Modularity optimization for fast automated detection of solute clusters in atom probe tomography
A Mukherjee, SR Broderick, T Zhang, K Rajan
Microscopy and Microanalysis 25 (S2), 300-301, 2019
12019
Probabilistic Design Miming
A Mukherjee, Y Zhang, R Rai
International Design Engineering Technical Conferences and Computers and …, 2014
12014
In situ Synchrotron X-ray Metrology Boosted by Automated Data Analysis for Real-time Monitoring of Cathode Calcination
R Dongol, A Mukherjee, J Bai, HJJ van Dam, MR Carbone, EF Abell, ...
Small methods, e2400181, 2024
2024
Identifying Weakly Connected Subsystems in Building Energy Model for Effective Load Estimation in Presence of Parametric Uncertainty
A Mukherjee, AK Szweda, A Alegria, R Rai, T Singh
arXiv preprint arXiv:2004.08417, 2020
2020
Deep Learning for Multiscale Atomistic Modeling of Multicomponent Crystal Chemistries Coupled with Hirshfeld Surface Analyses
KR Arpan Mukherjee, Aparajita Dasgupta, Tianmu Zhang, Scott Broderick
2019 MRS Fall Meeting and Exhibit, 2019
2019
У даний момент система не може виконати операцію. Спробуйте пізніше.
Статті 1–20