Підписатись
Rui Wang
Назва
Посилання
Посилання
Рік
Distributed additive encryption and quantization for privacy preserving federated deep learning
H Zhu, R Wang, Y Jin, K Liang, J Ning
Neurocomputing 463, 309-327, 2021
622021
PIVODL: Privacy-preserving vertical federated learning over distributed labels
H Zhu, R Wang, Y Jin, K Liang
IEEE Transactions on Artificial Intelligence 4 (5), 988-1001, 2021
352021
More is better (mostly): On the backdoor attacks in federated graph neural networks
J Xu, R Wang, S Koffas, K Liang, S Picek
Proceedings of the 38th Annual Computer Security Applications Conference …, 2022
292022
Feverless: Fast and secure vertical federated learning based on xgboost for decentralized labels
R Wang, O Ersoy, H Zhu, Y Jin, K Liang
IEEE Transactions on Big Data, 2022
242022
Your smart contracts are not secure: Investigating arbitrageurs and oracle manipulators in ethereum
K Tjiam, R Wang, H Chen, K Liang
Proceedings of the 3rd Workshop on Cyber-Security Arms Race, 25-35, 2021
232021
AN-GCN: an anonymous graph convolutional network against edge-perturbing attacks
A Liu, B Li, T Li, P Zhou, R Wang
IEEE transactions on neural networks and learning systems 35 (1), 88-102, 2022
122022
Federated synthetic data generation with stronger security guarantees
AR Ghavamipour, F Turkmen, R Wang, K Liang
Proceedings of the 28th ACM Symposium on Access Control Models and …, 2023
102023
FLVoogd: Robust and privacy preserving federated learning
T Yuhang, W Rui, Q Yanqi, P Emmanouil, L Kaitai
Asian Conference on Machine Learning, 1022-1037, 2023
72023
BRIEF but powerful: Byzantine-robust and privacy-preserving federated learning via model segmentation and secure clustering
R Wang, X Wang, H Chen, S Picek, Z Liu, K Liang
arXiv preprint arXiv:2208.10161, 2022
72022
Effect of homomorphic encryption on the performance of training federated learning generative adversarial networks
I Pejic, R Wang, K Liang
arXiv preprint arXiv:2207.00263, 2022
72022
Feature engineering framework based on secure multi-party computation in federated learning
L Sun, R Du, D He, S Zhu, R Wang, S Chan
2021 IEEE 23rd Int Conf on High Performance Computing & Communications; 7th …, 2021
62021
Multi-flgans: multi-distributed adversarial networks for non-iid distribution
A Amalan, R Wang, Y Qiao, E Panaousis, K Liang
arXiv preprint arXiv:2206.12178, 2022
52022
MUDGUARD: Taming Malicious Majorities in Federated Learning using Privacy-Preserving Byzantine-Robust Clustering
R Wang, X Wang, H Chen, J Decouchant, S Picek, N Laoutaris, K Liang
Proceedings of the ACM on Measurement and Analysis of Computing Systems 8 (3 …, 2024
22024
An overview of hybrid approaches in Horizontal Federated Learning
E Filip, K LIANG, RUI WANG
TU Delft Electrical Engineering, 2021
12021
LADDER: Multi-objective Backdoor Attack via Evolutionary Algorithm
D Liu, Y Qiao, R Wang, K Liang, G Smaragdakis
arXiv preprint arXiv:2411.19075, 2024
2024
Stealthy Backdoor Attack against Federated Learning through Frequency Domain by Backdoor Neuron Constraint and Model Camouflage
Y Qiao, D Liu, R Wang, K Liang
IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2024
2024
Low-Frequency Black-Box Backdoor Attack via Evolutionary Algorithm
Y Qiao, D Liu, R Wang, K Liang
arXiv preprint arXiv:2402.15653, 2024
2024
MUDGUARD
R Wang, X Wang, H Chen, J Decouchant, S Picek, N Laoutaris, K Liang
2024
Secure and resilient federated learning
R Wang
2024
FTA: Stealthy and Adaptive Backdoor Attack with Flexible Triggers on Federated Learning
Y Qiao, D Liu, C Chen, R Wang, K Liang
arXiv preprint arXiv:2309.00127, 2023
2023
У даний момент система не може виконати операцію. Спробуйте пізніше.
Статті 1–20