Towards a collaborative repository for the documentation of service-based antipatterns and bad smells J Bogner, T Boceck, M Popp, D Tschechlov, S Wagner, A Zimmermann 2019 IEEE International Conference on Software Architecture Companion (ICSA …, 2019 | 54 | 2019 |
AutoML4Clust: Efficient AutoML for Clustering Analyses. D Tschechlov, M Fritz, H Schwarz EDBT, 343-348, 2021 | 25 | 2021 |
Exploiting domain knowledge to address class imbalance and a heterogeneous feature space in multi-class classification V Hirsch, P Reimann, D Treder-Tschechlov, H Schwarz, B Mitschang The VLDB Journal 32 (5), 1037-1064, 2023 | 6 | 2023 |
Approach to synthetic data generation for imbalanced multi-class problems with heterogeneous groups D Treder-Tschechlov, P Reimann, H Schwarz, B Mitschang BTW 2023, 2023 | 6 | 2023 |
ML2DAC: Meta-Learning to Democratize AutoML for Clustering Analysis D Treder-Tschechlov, M Fritz, H Schwarz, B Mitschang Proceedings of the ACM on Management of Data 1 (2), 1-26, 2023 | 5 | 2023 |
Efficient exploratory clustering analyses in large-scale exploration processes M Fritz, M Behringer, D Tschechlov, H Schwarz The VLDB Journal 31 (4), 711-732, 2022 | 5 | 2022 |
Increasing Explainability of Clustering Results for Domain Experts by Identifying Meaningful Features. M Behringer, P Hirmer, D Tschechlov, B Mitschang ICEIS (2), 364-373, 2022 | 4 | 2022 |
Learning from past observations: Meta-learning for efficient clustering analyses M Fritz, D Tschechlov, H Schwarz Big Data Analytics and Knowledge Discovery: 22nd International Conference …, 2020 | 4 | 2020 |
Efficient Exploratory Clustering Analyses with Qualitative Approximations M Fritz, D Tschechlov, H Schwarz Extending Database Technology (EDBT), 337 - 342, 2021 | 3 | 2021 |
Analysis and transfer of automl concepts for clustering algorithms D Tschechlov | 2 | 2019 |
SDRank: A Deep Learning Approach for Similarity Ranking of Data Sources to Support User-Centric Data Analysis. M Behringer, D Treder-Tschechlov, J Voggesberger, P Hirmer, ... ICEIS (1), 419-428, 2023 | 1 | 2023 |
Empowering Domain Experts to Enhance Clustering Results Through Interactive Refinement M Behringer, D Treder-Tschechlov, J Rapp International Conference on Database Systems for Advanced Applications, 518-522, 2024 | | 2024 |
Ensemble Clustering Based on Meta-Learning and Hyperparameter Optimization D Treder-Tschechlov, M Fritz, H Schwarz, B Mitschang Proceedings of the VLDB Endowment 17 (11), 2880-2892, 2024 | | 2024 |
Connecting Domain Experts and Data: Enriching User-Centric Data Analysis with Neural Network-Aided Data Source Suggestion M Behringer, D Treder-Tschechlov, J Voggesberger, P Hirmer, ... International Conference on Enterprise Information Systems, 289-309, 2023 | | 2023 |
Metriken zur Evaluation von Teilschritten in Data Mining Analysen D Tschechlov | | 2017 |