Theo dõi
Sergey N. Pozdnyakov
Sergey N. Pozdnyakov
Email được xác minh tại epfl.ch
Tiêu đề
Trích dẫn bởi
Trích dẫn bởi
Năm
Incompleteness of atomic structure representations
SN Pozdnyakov, MJ Willatt, AP Bartók, C Ortner, G Csányi, M Ceriotti
Physical Review Letters 125 (16), 166001, 2020
2082020
Recursive evaluation and iterative contraction of N-body equivariant features
J Nigam, S Pozdnyakov, M Ceriotti
The Journal of chemical physics 153 (12), 2020
842020
Unified theory of atom-centered representations and message-passing machine-learning schemes
J Nigam, S Pozdnyakov, G Fraux, M Ceriotti
The Journal of Chemical Physics 156 (20), 2022
412022
Incompleteness of graph neural networks for points clouds in three dimensions
SN Pozdnyakov, M Ceriotti
Machine Learning: Science and Technology 3 (4), 045020, 2022
37*2022
Smooth, exact rotational symmetrization for deep learning on point clouds
S Pozdnyakov, M Ceriotti
Advances in Neural Information Processing Systems 36, 79469-79501, 2023
292023
Optimal radial basis for density-based atomic representations
A Goscinski, F Musil, S Pozdnyakov, J Nigam, M Ceriotti
The Journal of Chemical Physics 155 (10), 2021
292021
Wigner kernels: body-ordered equivariant machine learning without a basis
F Bigi, SN Pozdnyakov, M Ceriotti
The Journal of Chemical Physics 161 (4), 2024
162024
Completeness of atomic structure representations
J Nigam, SN Pozdnyakov, KK Huguenin-Dumittan, M Ceriotti
APL Machine Learning 2 (1), 2024
162024
Local invertibility and sensitivity of atomic structure-feature mappings
SN Pozdnyakov, L Zhang, C Ortner, G Csányi, M Ceriotti
Open Research Europe 1, 126, 2021
152021
Comment on “Manifolds of quasi-constant SOAP and ACSF fingerprints and the resulting failure to machine learn four-body interactions”[J. Chem. Phys. 156, 034302 (2022)]
SN Pozdnyakov, MJ Willatt, AP Bartók, C Ortner, G Csányi, M Ceriotti
The Journal of Chemical Physics 157 (17), 2022
102022
Fast general two-and three-body interatomic potential
S Pozdnyakov, AR Oganov, E Mazhnik, A Mazitov, I Kruglov
Physical Review B 107 (12), 125160, 2023
72023
Fast general two-and three-body interatomic potential
S Pozdnyakov, AR Oganov, E Mazhnik, A Mazitov, I Kruglov
arXiv preprint arXiv:1910.07513, 2019
72019
Dataset: Randomly-displaced methane configurations
S Pozdnyakov, M Willatt, M Ceriotti
Materials Cloud Archive 2020. 110, 2020
62020
Probing the effects of broken symmetries in machine learning
MF Langer, SN Pozdnyakov, M Ceriotti
Machine Learning: Science and Technology 5 (4), 04LT01, 2024
52024
Machine learning interatomic potentials for global optimization and molecular dynamics simulation
IA Kruglov, PE Dolgirev, AR Oganov, AB Mazitov, SN Pozdnyakov, ...
Materials Informatics: Methods, Tools and Applications, 253-288, 2019
22019
Advancing understanding and practical performance of machine learning interatomic potentials
S Pozdnyakov
EPFL, 2025
2025
Completeness of representations in atomistic machine learning
J Nigam, M Ceriotti, S Pozdnyakov, K Huguenin-Dumittan
APS March Meeting Abstracts 2024, NN00. 014, 2024
2024
Local invertibility and sensitivity of atomic structure-feature mappings.
L Zhang, G Csányi, SN Pozdnyakov, C Ortner, M Ceriotti
2021
MACHINE LEARNING POTENTIAL
S Pozdnyakov, E Mazhnik, I Kruglov, A Oganov, A Yanilkin
3rd Kazan Summer School on Chemoinformatics, 35-35, 2017
2017
MACHINE LEARNING POTENTIAL
A Oganov, E Mazhnik, I Kruglov, S Pozdnyakov, A Yanilkin
Hệ thống không thể thực hiện thao tác ngay bây giờ. Hãy thử lại sau.
Bài viết 1–20