Large data existence theory for three-dimensional unsteady flows of rate-type viscoelastic fluids with stress diffusion M Bathory, M Bulíček, J Málek Advances in Nonlinear Analysis 10 (1), 501-521, 2020 | 44 | 2020 |
Variational resolution of outflow boundary conditions for incompressible Navier–Stokes M Bathory, U Stefanelli Nonlinearity 35 (11), 5553, 2022 | 10 | 2022 |
Existence and qualitative theory for nonlinear elliptic systems with a nonlinear interface condition used in electrochemistry M Bathory, M Bulíček, O Souček Zeitschrift für angewandte Mathematik und Physik 71 (3), 74, 2020 | 8 | 2020 |
Joint weak type interpolation on Lorentz-Karamata spaces M Bathory arXiv preprint arXiv:1705.06334, 2017 | 6 | 2017 |
Outflow boundary condition leading to minimal energy dissipation for an incompressible flow M Bathory WDS 17, 7-12, 2017 | 3 | 2017 |
Coupling the Navier–Stokes–Fourier equations with the Johnson–Segalman stress-diffusive viscoelastic model: Global-in-time and large-data analysis M Bathory, M Bulíček, J Málek Mathematical Models and Methods in Applied Sciences 34 (03), 417-476, 2024 | 2 | 2024 |
Analysis of unsteady flows of incompressible heat-conducting rate-type viscoelastic fluids with stress-diffusion M Bathory Univerzita Karlova, Matematicko-fyzikální fakulta, 2020 | 1 | 2020 |
Sharp nonlinear estimates for multiplying derivatives of positive definite tensor fields M Bathory arXiv preprint arXiv:2007.15052, 2020 | 1 | 2020 |
Konjugovaná funkce M Bathory Univerzita Karlova, Matematicko-fyzikální fakulta, 2016 | | 2016 |
Konjugované řady k Fourierovým řadám M Bathory Univerzita Karlova, Matematicko-fyzikální fakulta, 2014 | | 2014 |
Optimal outflow boundary condition for a stationary flow of an incompressible fluid M Bathory, M Bulıcek | | |
OPTIMAL INEQUALITIES IN MULTIPLICATION OF DERIVATIVES OF POSITIVE DEFINITE MATRICES AND THEIR POWERS M BATHORY | | |
OutflowBoundaryConditionLeadingtoMinimal EnergyDissipationforanIncompressibleFlow M Bathory | | |