Can llms effectively leverage graph structural information: when and why J Huang, X Zhang, Q Mei, J Ma TMLR, 2024 | 54* | 2024 |
Sciassess: Benchmarking llm proficiency in scientific literature analysis H Cai, X Cai, J Chang, S Li, L Yao, C Wang, Z Gao, H Wang, Y Li, M Lin, ... Findings of NAACL, 2025 | 20 | 2025 |
Harsanyinet: Computing accurate shapley values in a single forward propagation L Chen, S Lou, K Zhang, J Huang, Q Zhang ICML, 2023 | 9 | 2023 |
MASSW: A New Dataset and Benchmark Tasks for AI-Assisted Scientific Workflows X Zhang, Y Xie, J Huang, J Ma, Z Pan, Q Liu, Z Xiong, T Ergen, D Shim, ... Findings of NAACL, 2025 | 8 | 2025 |
Graph learning indexer: A contributor-friendly and metadata-rich platform for graph learning benchmarks J Ma, X Zhang, H Fan, J Huang, T Li, TW Li, Y Tu, C Zhu, Q Mei Learning on Graphs Conference, 2022 | 4 | 2022 |
SciLitLLM: How to Adapt LLMs for Scientific Literature Understanding S Li*, J Huang*, J Zhuang, Y Shi, X Cai, M Xu, X Wang, L Zhang, G Ke, ... ICLR, 2025 | 3 | 2025 |
DCA-Bench: A Benchmark for Dataset Curation Agents B Huang, Y Yu, J Huang, X Zhang, J Ma arXiv preprint arXiv:2406.07275, 2024 | | 2024 |