Theo dõi
Nicolas Heess
Nicolas Heess
DeepMind
Email được xác minh tại google.com
Tiêu đề
Trích dẫn bởi
Trích dẫn bởi
Năm
Continuous control with deep reinforcement learning
TP Lillicrap, JJ Hunt, A Pritzel, N Heess, T Erez, Y Tassa, D Silver, ...
arXiv preprint arXiv:1509.02971, 2015
186192015
Deterministic policy gradient algorithms
D Silver, G Lever, N Heess, T Degris, D Wierstra, M Riedmiller
ICML, 2014
56992014
Recurrent models of visual attention
V Mnih, N Heess, A Graves
Advances in neural information processing systems, 2204-2212, 2014
50242014
Relational inductive biases, deep learning, and graph networks
PW Battaglia, JB Hamrick, V Bapst, A Sanchez-Gonzalez, V Zambaldi, ...
arXiv preprint arXiv:1806.01261, 2018
40402018
Emergence of locomotion behaviours in rich environments
N Heess, S Sriram, J Lemmon, J Merel, G Wayne, Y Tassa, T Erez, ...
arXiv preprint arXiv:1707.02286, 2017
11862017
Feudal networks for hierarchical reinforcement learning
AS Vezhnevets, S Osindero, T Schaul, N Heess, M Jaderberg, D Silver, ...
Proceedings of the 34th International Conference on Machine Learning-Volume …, 2017
11472017
Sample efficient actor-critic with experience replay
Z Wang, V Bapst, N Heess, V Mnih, R Munos, K Kavukcuoglu, ...
arXiv preprint arXiv:1611.01224, 2016
10582016
A Generalist Agent
S Reed, K Zolna, E Parisotto, SG Colmenarejo, A Novikov, G Barth-Maron, ...
arXiv preprint arXiv:2205.06175, 2022
10112022
Leveraging demonstrations for deep reinforcement learning on robotics problems with sparse rewards
M Večerík, T Hester, J Scholz, F Wang, O Pietquin, B Piot, N Heess, ...
arXiv preprint arXiv:1707.08817, 2017
8922017
Graph networks as learnable physics engines for inference and control
A Sanchez-Gonzalez, N Heess, JT Springenberg, J Merel, M Riedmiller, ...
arXiv preprint arXiv:1806.01242, 2018
7672018
Imagination-augmented agents for deep reinforcement learning
T Weber, S Racanière, DP Reichert, L Buesing, A Guez, DJ Rezende, ...
arXiv preprint arXiv:1707.06203, 2017
738*2017
Imagination-augmented agents for deep reinforcement learning
S Racanière, T Weber, D Reichert, L Buesing, A Guez, DJ Rezende, ...
Advances in neural information processing systems, 5690-5701, 2017
7372017
Learning continuous control policies by stochastic value gradients
N Heess, G Wayne, D Silver, T Lillicrap, T Erez, Y Tassa
Advances in Neural Information Processing Systems, 2944-2952, 2015
7092015
Distributed distributional deterministic policy gradients
G Barth-Maron, MW Hoffman, D Budden, W Dabney, D Horgan, A Muldal, ...
arXiv preprint arXiv:1804.08617, 2018
6982018
Continuous control with deep reinforcement learning. arXiv 2015
TP Lillicrap, JJ Hunt, A Pritzel, N Heess, T Erez, Y Tassa, D Silver, ...
arXiv preprint arXiv:1509.02971, 1935
6791935
Sim-to-real robot learning from pixels with progressive nets
AA Rusu, M Vecerik, T Rothörl, N Heess, R Pascanu, R Hadsell
arXiv preprint arXiv:1610.04286, 2016
6682016
Distral: Robust multitask reinforcement learning
Y Teh, V Bapst, WM Czarnecki, J Quan, J Kirkpatrick, R Hadsell, N Heess, ...
Advances in Neural Information Processing Systems, 4496-4506, 2017
6552017
Attend, infer, repeat: Fast scene understanding with generative models
SMA Eslami, N Heess, T Weber, Y Tassa, D Szepesvari, GE Hinton
Advances in Neural Information Processing Systems, 3225-3233, 2016
6202016
Maximum a posteriori policy optimisation
A Abdolmaleki, JT Springenberg, Y Tassa, R Munos, N Heess, ...
arXiv preprint arXiv:1806.06920, 2018
5582018
Learning by playing-solving sparse reward tasks from scratch
M Riedmiller, R Hafner, T Lampe, M Neunert, J Degrave, T Van de Wiele, ...
arXiv preprint arXiv:1802.10567, 2018
5302018
Hệ thống không thể thực hiện thao tác ngay bây giờ. Hãy thử lại sau.
Bài viết 1–20