Theo dõi
Xingchen Ma
Xingchen Ma
Amazon
Email được xác minh tại amazon.de
Tiêu đề
Trích dẫn bởi
Trích dẫn bởi
Năm
Depaudionet: An efficient deep model for audio based depression classification
X Ma, H Yang, Q Chen, D Huang, Y Wang
Proceedings of the 6th international workshop on audio/visual emotion …, 2016
3422016
Meta-cal: Well-controlled post-hoc calibration by ranking
X Ma, MB Blaschko
International Conference on Machine Learning, 7235-7245, 2021
382021
A Bayesian optimization framework for neural network compression
X Ma, AR Triki, M Berman, C Sagonas, J Cali, MB Blaschko
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2019
292019
Confidence-aware personalized federated learning via variational expectation maximization
J Zhu, X Ma, MB Blaschko
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2023
262023
Cost-sensitive two-stage depression prediction using dynamic visual clues
X Ma, D Huang, Y Wang, Y Wang
Computer Vision–ACCV 2016: 13th Asian Conference on Computer Vision, Taipei …, 2017
212017
Additive tree-structured conditional parameter spaces in Bayesian optimization: A novel covariance function and a fast implementation
X Ma, MB Blaschko
IEEE Transactions on Pattern Analysis and Machine Intelligence 43 (9), 3024-3036, 2020
92020
Additive tree-structured covariance function for conditional parameter spaces in Bayesian optimization
X Ma, M Blaschko
International Conference on Artificial Intelligence and Statistics, 1015-1025, 2020
92020
Structural pruning of large language models via neural architecture search
A Klein, J Golebiowski, X Ma, V Perrone, C Archambeau
82023
Depaudionet: An efficient deep model for audio based depression classification Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge
X Ma, H Yang, Q Chen, D Huang, Y Wang
ACM, 2016
62016
A corrected expected improvement acquisition function under noisy observations
H Zhou, X Ma, MB Blaschko
Asian Conference on Machine Learning, 1747-1762, 2024
32024
Structural pruning of pre-trained language models via neural architecture search
A Klein, J Golebiowski, X Ma, V Perrone, C Archambeau
arXiv preprint arXiv:2405.02267, 2024
22024
Tackling personalized federated learning with label concept drift via hierarchical bayesian modeling
X Ma, J Zhu, M Blaschko
Online FL-NeurIPS 2022, 2022
22022
Uncertainty Estimation in Machine Learning: Applications in Neural Network Compression and Calibration
X Ma, M Blaschko
2023
Hệ thống không thể thực hiện thao tác ngay bây giờ. Hãy thử lại sau.
Bài viết 1–13