Theo dõi
Hado van Hasselt
Hado van Hasselt
Research Scientist, DeepMind; Honorary Professor, UCL
Email được xác minh tại google.com - Trang chủ
Tiêu đề
Trích dẫn bởi
Trích dẫn bởi
Năm
Deep reinforcement learning with double Q-learning
H van Hasselt, A Guez, D Silver
AAAI Conference on Artificial Intelligence, 2094-2100, 2016
105982016
Dueling Network Architectures for Deep Reinforcement Learning
Z Wang, T Schaul, M Hessel, H van Hasselt, M Lanctot, N de Freitas
The 33rd International Conference on Machine Learning, 1995–2003, 2016
56112016
Rainbow: Combining improvements in deep reinforcement learning
M Hessel, J Modayil, H van Hasselt, T Schaul, G Ostrovski, W Dabney, ...
Thirty-Second AAAI Conference on Artificial Intelligence, 2018
29512018
Double Q-learning
H van Hasselt
Advances in Neural Information Processing Systems, 2613-2621, 2010
2356*2010
Starcraft ii: A new challenge for reinforcement learning
O Vinyals, T Ewalds, S Bartunov, P Georgiev, AS Vezhnevets, M Yeo, ...
arXiv preprint arXiv:1708.04782, 2017
11642017
Advances in neural information processing systems
G Papamakarios, I Murray, T Pavlakou
Inc. Curran Associates, Long Beach, California, USA, 2338, 2017
9042017
Deep Reinforcement Learning in Large Discrete Action Spaces
G Dulac-Arnold, R Evans, H van Hasselt, P Sunehag, T Lillicrap, J Hunt
7942015
Successor features for transfer in reinforcement learning
A Barreto, W Dabney, R Munos, JJ Hunt, T Schaul, HP van Hasselt, ...
Advances in neural information processing systems 30, 2017
7042017
Meta-gradient reinforcement learning
Z Xu, HP van Hasselt, D Silver
Advances in neural information processing systems 31, 2018
3802018
Reinforcement learning in continuous action spaces
H van Hasselt, MA Wiering
Approximate Dynamic Programming and Reinforcement Learning, 2007. ADPRL 2007 …, 2007
3432007
Multi-task deep reinforcement learning with popart
M Hessel, H Soyer, L Espeholt, W Czarnecki, S Schmitt, H Van Hasselt
Proceedings of the AAAI Conference on Artificial Intelligence 33 (01), 3796-3803, 2019
3362019
Reinforcement Learning in Continuous State and Action Spaces
H van Hasselt
Reinforcement Learning: State of the Art, 207-251, 2012
3182012
The predictron: End-to-end learning and planning
D Silver, H Hasselt, M Hessel, T Schaul, A Guez, T Harley, ...
International Conference on Machine Learning, 3191-3199, 2017
3162017
A theoretical and empirical analysis of Expected Sarsa
H van Seijen, H van Hasselt, S Whiteson, M Wiering
Adaptive Dynamic Programming and Reinforcement Learning, 2009. ADPRL'09 …, 2009
3032009
Deep reinforcement learning and the deadly triad
H van Hasselt, Y Doron, F Strub, M Hessel, N Sonnerat, J Modayil
arXiv preprint arXiv:1812.02648, 2018
2842018
Ensemble algorithms in reinforcement learning
MA Wiering, H van Hasselt
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 38 …, 2008
2682008
When to use parametric models in reinforcement learning?
HP Van Hasselt, M Hessel, J Aslanides
Advances in Neural Information Processing Systems 32, 2019
2372019
Learning values across many orders of magnitude
H van Hasselt, A Guez, M Hessel, V Mnih, D Silver
Advances in Neural Information Processing Systems 29 (NIPS 2016), 2016
2152016
Behaviour suite for reinforcement learning
I Osband, Y Doron, M Hessel, J Aslanides, E Sezener, A Saraiva, ...
arXiv preprint arXiv:1908.03568, 2019
2042019
Weighted importance sampling for off-policy learning with linear function approximation
AR Mahmood, H van Hasselt, RS Sutton
Advances in Neural Information Processing Systems 27, 2014
1892014
Hệ thống không thể thực hiện thao tác ngay bây giờ. Hãy thử lại sau.
Bài viết 1–20