Theo dõi
Ross Allen
Ross Allen
Artificial Intelligence Technology, MIT Lincoln Laboratory
Email được xác minh tại ll.mit.edu
Tiêu đề
Trích dẫn bởi
Trích dẫn bởi
Năm
Deep implicit coordination graphs for multi-agent reinforcement learning
S Li, JK Gupta, P Morales, R Allen, MJ Kochenderfer
arXiv preprint arXiv:2006.11438, 2020
1022020
A real-time framework for kinodynamic planning with application to quadrotor obstacle avoidance
R Allen, M Pavone
AIAA Guidance, Navigation, and Control Conference, 1374, 2016
972016
A machine learning approach for real-time reachability analysis
RE Allen, AA Clark, JA Starek, M Pavone
2014 IEEE/RSJ international conference on intelligent robots and systems …, 2014
862014
Evaluation of human-ai teams for learned and rule-based agents in hanabi
HC Siu, J Peña, E Chen, Y Zhou, V Lopez, K Palko, K Chang, R Allen
Advances in Neural Information Processing Systems 34, 16183-16195, 2021
602021
A real-time framework for kinodynamic planning in dynamic environments with application to quadrotor obstacle avoidance
RE Allen, M Pavone
Robotics and Autonomous Systems 115, 174-193, 2019
542019
Internally-actuated rovers for all-access surface mobility: Theory and experimentation
R Allen, M Pavone, C McQuin, IAD Nesnas, JC Castillo-Rogez, ...
2013 IEEE International Conference on Robotics and Automation, 5481-5488, 2013
39*2013
Learning emergent discrete message communication for cooperative reinforcement learning
S Li, Y Zhou, R Allen, MJ Kochenderfer
2022 International Conference on Robotics and Automation (ICRA), 5511-5517, 2022
172022
Toward a real-time framework for solving the kinodynamic motion planning problem
R Allen, M Pavone
2015 IEEE international conference on robotics and automation (ICRA), 928-934, 2015
172015
Any-play: An intrinsic augmentation for zero-shot coordination
K Lucas, RE Allen
arXiv preprint arXiv:2201.12436, 2022
152022
Interpretable autonomous flight via compact visualizable neural circuit policies
P Tylkin, TH Wang, K Palko, R Allen, HC Siu, D Wrafter, T Seyde, A Amini, ...
IEEE Robotics and Automation Letters 7 (2), 3265-3272, 2022
132022
Training deep learning spacecraft component detection algorithms using synthetic image data
H Viggh, S Loughran, Y Rachlin, R Allen, J Ruprecht
2023 IEEE Aerospace Conference, 1-13, 2023
122023
Toward an autonomous aerial survey and planning system for humanitarian aid and disaster response
R Allen, M Mazumder
2020 IEEE Aerospace Conference, 1-11, 2020
92020
Health-informed policy gradients for multi-agent reinforcement learning
RE Allen, JK Gupta, J Pena, Y Zhou, JW Bear, MJ Kochenderfer
arXiv preprint arXiv:1908.01022, 2019
92019
Flying smartphones: when portable computing sprouts wings
R Allen, M Pavone, M Schwager
IEEE Pervasive Computing 15 (3), 83-88, 2016
92016
Spacegym: Discrete and differential games in non-cooperative space operations
RE Allen, Y Rachlin, J Ruprecht, S Loughran, J Varey, H Viggh
2023 IEEE Aerospace Conference, 1-12, 2023
82023
A machine learning approach for real-time reachability analysis. In 2014 IEEE/RSJ international conference on intelligent robots and systems (pp. 2202–2208), Chicago, IL, USA …
RE Allen, AA Clark, JA Starek, M Pavone
IEEE. https://doi. org/10.1109/IROS, 2014
52014
Autonomous flight arcade challenge: Single-and multi-agent learning environments for aerial vehicles
P Tylkin, TH Wang, T Seyde, K Palko, R Allen, A Amini, D Rus
Proceedings of the 21st International Conference on Autonomous Agents and …, 2022
32022
Second-Order Algorithms for Finding Local Nash Equilibria in Zero-Sum Games
K Gupta, X Liu, R Allen, U Topcu, D Fridovich-Keil
arXiv preprint arXiv:2406.03565, 2024
12024
Distributed online planning for min-max problems in networked markov games
AE Tzikas, J Park, MJ Kochenderfer, RE Allen
IEEE Robotics and Automation Letters, 2024
12024
Towards a distributed framework for multi-agent reinforcement learning research
Y Zhou, S Manuel, P Morales, S Li, J Pena, R Allen
2020 IEEE High Performance Extreme Computing Conference (HPEC), 1-9, 2020
12020
Hệ thống không thể thực hiện thao tác ngay bây giờ. Hãy thử lại sau.
Bài viết 1–20