Regularizing class-wise predictions via self-knowledge distillation S Yun, J Park, K Lee, J Shin Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2020 | 352 | 2020 |
SURF: Semi-supervised reward learning with data augmentation for feedback-efficient preference-based reinforcement learning J Park, Y Seo, J Shin, H Lee, P Abbeel, K Lee arXiv preprint arXiv:2203.10050, 2022 | 94 | 2022 |
Preference transformer: Modeling human preferences using transformers for rl C Kim, J Park, J Shin, H Lee, P Abbeel, K Lee arXiv preprint arXiv:2303.00957, 2023 | 71 | 2023 |
Opencos: Contrastive semi-supervised learning for handling open-set unlabeled data J Park, S Yun, J Jeong, J Shin European Conference on Computer Vision, 134-149, 2022 | 36 | 2022 |
SuRe: Summarizing Retrievals using Answer Candidates for Open-domain QA of LLMs J Kim, J Nam, S Mo, J Park, SW Lee, M Seo, JW Ha, J Shin arXiv preprint arXiv:2404.13081, 2024 | 28 | 2024 |
Object-aware regularization for addressing causal confusion in imitation learning J Park, Y Seo, C Liu, L Zhao, T Qin, J Shin, TY Liu Advances in Neural Information Processing Systems 34, 3029-3042, 2021 | 28 | 2021 |
Sure: Improving open-domain question answering of llms via summarized retrieval J Kim, J Nam, S Mo, J Park, SW Lee, M Seo, JW Ha, J Shin The Twelfth International Conference on Learning Representations, 2023 | 18 | 2023 |
Meta-learning with self-improving momentum target J Tack, J Park, H Lee, J Lee, J Shin Advances in Neural Information Processing Systems 35, 6318-6332, 2022 | 9 | 2022 |
Regularizing Predictions via Class-wise Self-knowledge Distillation S Yun, J Park, K Lee, J Shin | | |