关注
QIANG FU
QIANG FU
Tencent AI Lab
在 tencent.com 的电子邮件经过验证
标题
引用次数
引用次数
年份
Mastering complex control in moba games with deep reinforcement learning
D Ye, Z Liu, M Sun, B Shi, P Zhao, H Wu, H Yu, S Yang, X Wu, Q Guo, ...
Proceedings of the AAAI Conference on Artificial Intelligence 34 (04), 6672-6679, 2020
3592020
Towards playing full moba games with deep reinforcement learning
D Ye, G Chen, W Zhang, S Chen, B Yuan, B Liu, J Chen, Z Liu, F Qiu, ...
Advances in Neural Information Processing Systems 33, 621-632, 2020
2112020
More agents is all you need
J Li, Q Zhang, Y Yu, Q Fu, D Ye
arXiv preprint arXiv:2402.05120, 2024
682024
Supervised learning achieves human-level performance in moba games: A case study of honor of kings
D Ye, G Chen, P Zhao, F Qiu, B Yuan, W Zhang, S Chen, M Sun, X Li, S Li, ...
IEEE Transactions on Neural Networks and Learning Systems 33 (3), 908-918, 2020
642020
Juewu-mc: Playing minecraft with sample-efficient hierarchical reinforcement learning
Z Lin, J Li, J Shi, D Ye, Q Fu, W Yang
arXiv preprint arXiv:2112.04907, 2021
392021
Rltf: Reinforcement learning from unit test feedback
J Liu, Y Zhu, K Xiao, Q Fu, X Han, W Yang, D Ye
arXiv preprint arXiv:2307.04349, 2023
352023
Which heroes to pick? learning to draft in moba games with neural networks and tree search
S Chen, M Zhu, D Ye, W Zhang, Q Fu, W Yang
IEEE Transactions on Games 13 (4), 410-421, 2021
342021
Mapgo: Model-assisted policy optimization for goal-oriented tasks
M Zhu, M Liu, J Shen, Z Zhang, S Chen, W Zhang, D Ye, Y Yu, Q Fu, ...
arXiv preprint arXiv:2105.06350, 2021
302021
Actor-critic policy optimization in a large-scale imperfect-information game
H Fu, W Liu, S Wu, Y Wang, T Yang, K Li, J Xing, B Li, B Ma, Q Fu, Y Wei
International Conference on Learning Representations, 2021
302021
Honor of kings arena: an environment for generalization in competitive reinforcement learning
H Wei, J Chen, X Ji, H Qin, M Deng, S Li, L Wang, W Zhang, Y Yu, L Linc, ...
Advances in Neural Information Processing Systems 35, 11881-11892, 2022
282022
Minerl diamond 2021 competition: Overview, results, and lessons learned
A Kanervisto, S Milani, K Ramanauskas, N Topin, Z Lin, J Li, J Shi, D Ye, ...
NeurIPS 2021 Competitions and Demonstrations Track, 13-28, 2022
282022
Future-conditioned unsupervised pretraining for decision transformer
Z Xie, Z Lin, D Ye, Q Fu, Y Wei, S Li
International Conference on Machine Learning, 38187-38203, 2023
222023
Enhance reasoning for large language models in the game werewolf
S Wu, L Zhu, T Yang, S Xu, Q Fu, Y Wei, H Fu
arXiv preprint arXiv:2402.02330, 2024
192024
Quality-similar diversity via population based reinforcement learning
S Wu, J Yao, H Fu, Y Tian, C Qian, Y Yang, Q Fu, Y Wei
The Eleventh International Conference on Learning Representations, 2023
172023
Revisiting discrete soft actor-critic
H Zhou, Z Lin, J Li, Q Fu, W Yang, D Ye
arXiv preprint arXiv:2209.10081, 2022
162022
Heterogeneous multi-agent zero-shot coordination by coevolution
K Xue, Y Wang, C Guan, L Yuan, H Fu, Q Fu, C Qian, Y Yu
IEEE Transactions on Evolutionary Computation, 2024
152024
Boosting offline reinforcement learning with residual generative modeling
H Wei, D Ye, Z Liu, H Wu, B Yuan, Q Fu, W Yang, Z Li
arXiv preprint arXiv:2106.10411, 2021
142021
Automatic grouping for efficient cooperative multi-agent reinforcement learning
Y Zang, J He, K Li, H Fu, Q Fu, J Xing, J Cheng
Advances in Neural Information Processing Systems 36, 2024
122024
Policy space diversity for non-transitive games
J Yao, W Liu, H Fu, Y Yang, S McAleer, Q Fu, W Yang
Advances in Neural Information Processing Systems 36, 2024
122024
Greedy when sure and conservative when uncertain about the opponents
H Fu, Y Tian, H Yu, W Liu, S Wu, J Xiong, Y Wen, K Li, J Xing, Q Fu, ...
International Conference on Machine Learning, 6829-6848, 2022
122022
系统目前无法执行此操作,请稍后再试。
文章 1–20