Discontinuity of the phase transition for the planar random-cluster and Potts models with H Duminil-Copin, M Gagnebin, M Harel, I Manolescu, V Tassion arXiv preprint arXiv:1611.09877, 2016 | 89 | 2016 |
Inhomogeneous bond percolation on square, triangular and hexagonal lattices GR Grimmett, I Manolescu | 52 | 2013 |
Scaling limits and influence of the seed graph in preferential attachment trees N Curien, T Duquesne, I Kortchemski, I Manolescu Journal de l’École polytechnique—Mathématiques 2, 1-34, 2015 | 49 | 2015 |
Universality for the random-cluster model on isoradial graphs H Duminil-Copin, JH Li, I Manolescu | 45 | 2018 |
Bond percolation on isoradial graphs: criticality and universality GR Grimmett, I Manolescu Probability Theory and Related Fields 159, 273-327, 2014 | 45 | 2014 |
Delocalization of the height function of the six-vertex model H Duminil-Copin, AM Karrila, I Manolescu, M Oulamara Journal of the European Mathematical Society 26 (11), 4131-4190, 2024 | 37 | 2024 |
Discontinuity of the phase transition for the planar random-cluster and Potts models with q> 4 H Duminil-Copin, M Gagnebin, M Harel, I Manolescu, V Tassion Annales scientifiques de l'École Normale Supérieure 54 (6), 1363-1413, 2021 | 35 | 2021 |
Planar lattices do not recover from forest fires D Kiss, I Manolescu, V Sidoravicius The Annals of Probability, 3216-3238, 2015 | 34 | 2015 |
Planar random-cluster model: fractal properties of the critical phase H Duminil-Copin, I Manolescu, V Tassion Probability Theory and Related Fields 181 (1), 401-449, 2021 | 32 | 2021 |
Rotational invariance in critical planar lattice models H Duminil-Copin, KK Kozlowski, D Krachun, I Manolescu, M Oulamara arXiv preprint arXiv:2012.11672, 2020 | 31 | 2020 |
Uniform Lipschitz functions on the triangular lattice have logarithmic variations A Glazman, I Manolescu Communications in mathematical physics 381 (3), 1153-1221, 2021 | 28 | 2021 |
Universality for bond percolation in two dimensions GR Grimmett, I Manolescu | 28 | 2013 |
The phase transitions of the planar random-cluster and Potts models with q≥ 1 are sharp H Duminil-Copin, I Manolescu | 27 | 2014 |
On the six-vertex model’s free energy H Duminil-Copin, KK Kozlowski, D Krachun, I Manolescu, ... Communications in Mathematical Physics 395 (3), 1383-1430, 2022 | 22 | 2022 |
Planar random-cluster model: scaling relations H Duminil-Copin, I Manolescu Forum of Mathematics, Pi 10, e23, 2022 | 22 | 2022 |
The Bethe ansatz for the six-vertex and XXZ models: An exposition H Duminil-Copin, M Gagnebin, M Harel, I Manolescu, V Tassion | 21 | 2018 |
On the probability that self-avoiding walk ends at a given point H Duminil-Copin, A Glazman, A Hammond, I Manolescu | 20 | 2016 |
BOUNDING THE NUMBER OF SELF-AVOIDING WALKS H Duminil-Copin, S Ganguly, A Hammond, I Manolescu The Annals of Probability 48 (4), 1644-1692, 2020 | 11 | 2020 |
Universality for planar percolation I Manolescu University of Cambridge, 2012 | 8 | 2012 |
Structure of Gibbs measure for planar FK-percolation and Potts models A Glazman, I Manolescu Probability and Mathematical Physics 4 (2), 209-256, 2023 | 7 | 2023 |