关注
Ioan Manolescu
Ioan Manolescu
在 unifr.ch 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Discontinuity of the phase transition for the planar random-cluster and Potts models with
H Duminil-Copin, M Gagnebin, M Harel, I Manolescu, V Tassion
arXiv preprint arXiv:1611.09877, 2016
892016
Inhomogeneous bond percolation on square, triangular and hexagonal lattices
GR Grimmett, I Manolescu
522013
Scaling limits and influence of the seed graph in preferential attachment trees
N Curien, T Duquesne, I Kortchemski, I Manolescu
Journal de l’École polytechnique—Mathématiques 2, 1-34, 2015
492015
Universality for the random-cluster model on isoradial graphs
H Duminil-Copin, JH Li, I Manolescu
452018
Bond percolation on isoradial graphs: criticality and universality
GR Grimmett, I Manolescu
Probability Theory and Related Fields 159, 273-327, 2014
452014
Delocalization of the height function of the six-vertex model
H Duminil-Copin, AM Karrila, I Manolescu, M Oulamara
Journal of the European Mathematical Society 26 (11), 4131-4190, 2024
372024
Discontinuity of the phase transition for the planar random-cluster and Potts models with q> 4
H Duminil-Copin, M Gagnebin, M Harel, I Manolescu, V Tassion
Annales scientifiques de l'École Normale Supérieure 54 (6), 1363-1413, 2021
352021
Planar lattices do not recover from forest fires
D Kiss, I Manolescu, V Sidoravicius
The Annals of Probability, 3216-3238, 2015
342015
Planar random-cluster model: fractal properties of the critical phase
H Duminil-Copin, I Manolescu, V Tassion
Probability Theory and Related Fields 181 (1), 401-449, 2021
322021
Rotational invariance in critical planar lattice models
H Duminil-Copin, KK Kozlowski, D Krachun, I Manolescu, M Oulamara
arXiv preprint arXiv:2012.11672, 2020
312020
Uniform Lipschitz functions on the triangular lattice have logarithmic variations
A Glazman, I Manolescu
Communications in mathematical physics 381 (3), 1153-1221, 2021
282021
Universality for bond percolation in two dimensions
GR Grimmett, I Manolescu
282013
The phase transitions of the planar random-cluster and Potts models with q≥ 1 are sharp
H Duminil-Copin, I Manolescu
272014
On the six-vertex model’s free energy
H Duminil-Copin, KK Kozlowski, D Krachun, I Manolescu, ...
Communications in Mathematical Physics 395 (3), 1383-1430, 2022
222022
Planar random-cluster model: scaling relations
H Duminil-Copin, I Manolescu
Forum of Mathematics, Pi 10, e23, 2022
222022
The Bethe ansatz for the six-vertex and XXZ models: An exposition
H Duminil-Copin, M Gagnebin, M Harel, I Manolescu, V Tassion
212018
On the probability that self-avoiding walk ends at a given point
H Duminil-Copin, A Glazman, A Hammond, I Manolescu
202016
BOUNDING THE NUMBER OF SELF-AVOIDING WALKS
H Duminil-Copin, S Ganguly, A Hammond, I Manolescu
The Annals of Probability 48 (4), 1644-1692, 2020
112020
Universality for planar percolation
I Manolescu
University of Cambridge, 2012
82012
Structure of Gibbs measure for planar FK-percolation and Potts models
A Glazman, I Manolescu
Probability and Mathematical Physics 4 (2), 209-256, 2023
72023
系统目前无法执行此操作,请稍后再试。
文章 1–20