Flood prediction using machine learning models: Literature review

A Mosavi, P Ozturk, K Chau - Water, 2018 - mdpi.com
Floods are among the most destructive natural disasters, which are highly complex to model.
The research on the advancement of flood prediction models contributed to risk reduction …

Flood susceptibility map** with machine learning, multi-criteria decision analysis and ensemble using Dempster Shafer Theory

TG Nachappa, ST Piralilou, K Gholamnia… - Journal of …, 2020 - Elsevier
Floods are one of the most widespread natural hazards occurring across the globe. The
main objective of this study was to produce flood susceptibility maps for the province of …

[HTML][HTML] Landslide susceptibility prediction using slope unit-based machine learning models considering the heterogeneity of conditioning factors

Z Chang, F Catani, F Huang, G Liu, SR Meena… - Journal of Rock …, 2023 - Elsevier
To perform landslide susceptibility prediction (LSP), it is important to select appropriate
map** unit and landslide-related conditioning factors. The efficient and automatic multi …

Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection

O Ghorbanzadeh, T Blaschke, K Gholamnia… - Remote Sensing, 2019 - mdpi.com
There is a growing demand for detailed and accurate landslide maps and inventories
around the globe, but particularly in hazard-prone regions such as the Himalayas. Most …

Comparing the prediction performance of a Deep Learning Neural Network model with conventional machine learning models in landslide susceptibility assessment

DT Bui, P Tsangaratos, VT Nguyen, N Van Liem… - Catena, 2020 - Elsevier
The main objective of the current study was to introduce a Deep Learning Neural Network
(DLNN) model in landslide susceptibility assessments and compare its predictive …

[HTML][HTML] A hybrid ensemble-based deep-learning framework for landslide susceptibility map**

L Lv, T Chen, J Dou, A Plaza - … Journal of Applied Earth Observation and …, 2022 - Elsevier
Landslides are highly hazardous geological disasters that can potentially threaten the safety
of human life and property. As a result, landslide susceptibility map** (LSM) plays an …

Landslide susceptibility prediction based on a semi-supervised multiple-layer perceptron model

F Huang, Z Cao, SH Jiang, C Zhou, J Huang, Z Guo - Landslides, 2020 - Springer
Conventional supervised and unsupervised machine learning models used for landslide
susceptibility prediction (LSP) have many drawbacks, such as an insufficient number of …

GIS-based landslide susceptibility assessment using optimized hybrid machine learning methods

X Chen, W Chen - Catena, 2021 - Elsevier
Globally, but especially in China, landslides are considered to be one of the most severe
and significant natural hazards. In this study, bivariate statistical-based kernel logistic …

[HTML][HTML] Landslide susceptibility map** using machine learning algorithms and comparison of their performance at Abha Basin, Asir Region, Saudi Arabia

AM Youssef, HR Pourghasemi - Geoscience Frontiers, 2021 - Elsevier
The current study aimed at evaluating the capabilities of seven advanced machine learning
techniques (MLTs), including, Support Vector Machine (SVM), Random Forest (RF) …

Advances in computational intelligence of polymer composite materials: machine learning assisted modeling, analysis and design

A Sharma, T Mukhopadhyay, SM Rangappa… - … Methods in Engineering, 2022 - Springer
The superior multi-functional properties of polymer composites have made them an ideal
choice for aerospace, automobile, marine, civil, and many other technologically demanding …