[HTML][HTML] Applications and techniques for fast machine learning in science

AMC Deiana, N Tran, J Agar, M Blott… - Frontiers in big …, 2022 - frontiersin.org
In this community review report, we discuss applications and techniques for fast machine
learning (ML) in science—the concept of integrating powerful ML methods into the real-time …

Survey of optimization algorithms in modern neural networks

R Abdulkadirov, P Lyakhov, N Nagornov - Mathematics, 2023 - mdpi.com
The main goal of machine learning is the creation of self-learning algorithms in many areas
of human activity. It allows a replacement of a person with artificial intelligence in seeking to …

Adabelief optimizer: Adapting stepsizes by the belief in observed gradients

J Zhuang, T Tang, Y Ding… - Advances in neural …, 2020 - proceedings.neurips.cc
Most popular optimizers for deep learning can be broadly categorized as adaptive methods
(eg~ Adam) and accelerated schemes (eg~ stochastic gradient descent (SGD) with …

A modified Adam algorithm for deep neural network optimization

M Reyad, AM Sarhan, M Arafa - Neural Computing and Applications, 2023 - Springer
Abstract Deep Neural Networks (DNNs) are widely regarded as the most effective learning
tool for dealing with large datasets, and they have been successfully used in thousands of …

Sophia: A scalable stochastic second-order optimizer for language model pre-training

H Liu, Z Li, D Hall, P Liang, T Ma - arxiv preprint arxiv:2305.14342, 2023 - arxiv.org
Given the massive cost of language model pre-training, a non-trivial improvement of the
optimization algorithm would lead to a material reduction on the time and cost of training …

On the effectiveness of parameter-efficient fine-tuning

Z Fu, H Yang, AMC So, W Lam, L Bing… - Proceedings of the AAAI …, 2023 - ojs.aaai.org
Fine-tuning pre-trained models has been ubiquitously proven to be effective in a wide range
of NLP tasks. However, fine-tuning the whole model is parameter inefficient as it always …

The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study

E Hassan, MY Shams, NA Hikal, S Elmougy - Multimedia Tools and …, 2023 - Springer
Optimization algorithms are used to improve model accuracy. The optimization process
undergoes multiple cycles until convergence. A variety of optimization strategies have been …

The right to be forgotten in federated learning: An efficient realization with rapid retraining

Y Liu, L Xu, X Yuan, C Wang, B Li - IEEE INFOCOM 2022-IEEE …, 2022 - ieeexplore.ieee.org
In Machine Learning, the emergence of the right to be forgotten gave birth to a paradigm
named machine unlearning, which enables data holders to proactively erase their data from …

Pyhessian: Neural networks through the lens of the hessian

Z Yao, A Gholami, K Keutzer… - 2020 IEEE international …, 2020 - ieeexplore.ieee.org
We present PYHESSIAN, a new scalable framework that enables fast computation of
Hessian (ie, second-order derivative) information for deep neural networks. PYHESSIAN …

How important are activation functions in regression and classification? A survey, performance comparison, and future directions

AD Jagtap, GE Karniadakis - Journal of Machine Learning for …, 2023 - dl.begellhouse.com
Inspired by biological neurons, the activation functions play an essential part in the learning
process of any artificial neural network (ANN) commonly used in many real-world problems …