Counterfactual explanations and how to find them: literature review and benchmarking
R Guidotti - Data Mining and Knowledge Discovery, 2024 - Springer
Interpretable machine learning aims at unveiling the reasons behind predictions returned by
uninterpretable classifiers. One of the most valuable types of explanation consists of …
uninterpretable classifiers. One of the most valuable types of explanation consists of …
From anecdotal evidence to quantitative evaluation methods: A systematic review on evaluating explainable ai
The rising popularity of explainable artificial intelligence (XAI) to understand high-performing
black boxes raised the question of how to evaluate explanations of machine learning (ML) …
black boxes raised the question of how to evaluate explanations of machine learning (ML) …
Towards out-of-distribution generalization: A survey
Traditional machine learning paradigms are based on the assumption that both training and
test data follow the same statistical pattern, which is mathematically referred to as …
test data follow the same statistical pattern, which is mathematically referred to as …
A survey of algorithmic recourse: contrastive explanations and consequential recommendations
Machine learning is increasingly used to inform decision making in sensitive situations
where decisions have consequential effects on individuals' lives. In these settings, in …
where decisions have consequential effects on individuals' lives. In these settings, in …
A survey on neural network interpretability
Along with the great success of deep neural networks, there is also growing concern about
their black-box nature. The interpretability issue affects people's trust on deep learning …
their black-box nature. The interpretability issue affects people's trust on deep learning …
Empowering things with intelligence: a survey of the progress, challenges, and opportunities in artificial intelligence of things
In the Internet-of-Things (IoT) era, billions of sensors and devices collect and process data
from the environment, transmit them to cloud centers, and receive feedback via the Internet …
from the environment, transmit them to cloud centers, and receive feedback via the Internet …
A survey of contrastive and counterfactual explanation generation methods for explainable artificial intelligence
A number of algorithms in the field of artificial intelligence offer poorly interpretable
decisions. To disclose the reasoning behind such algorithms, their output can be explained …
decisions. To disclose the reasoning behind such algorithms, their output can be explained …
Interpretable deep learning: Interpretation, interpretability, trustworthiness, and beyond
Deep neural networks have been well-known for their superb handling of various machine
learning and artificial intelligence tasks. However, due to their over-parameterized black-box …
learning and artificial intelligence tasks. However, due to their over-parameterized black-box …
" Help Me Help the AI": Understanding How Explainability Can Support Human-AI Interaction
Despite the proliferation of explainable AI (XAI) methods, little is understood about end-
users' explainability needs and behaviors around XAI explanations. To address this gap and …
users' explainability needs and behaviors around XAI explanations. To address this gap and …
Counterfactual vqa: A cause-effect look at language bias
Recent VQA models may tend to rely on language bias as a shortcut and thus fail to
sufficiently learn the multi-modal knowledge from both vision and language. In this paper …
sufficiently learn the multi-modal knowledge from both vision and language. In this paper …