Variational quantum algorithms
Applications such as simulating complicated quantum systems or solving large-scale linear
algebra problems are very challenging for classical computers, owing to the extremely high …
algebra problems are very challenging for classical computers, owing to the extremely high …
Noisy intermediate-scale quantum algorithms
A universal fault-tolerant quantum computer that can efficiently solve problems such as
integer factorization and unstructured database search requires millions of qubits with low …
integer factorization and unstructured database search requires millions of qubits with low …
Quantum supremacy using a programmable superconducting processor
The promise of quantum computers is that certain computational tasks might be executed
exponentially faster on a quantum processor than on a classical processor 1. A fundamental …
exponentially faster on a quantum processor than on a classical processor 1. A fundamental …
Barren plateaus in quantum neural network training landscapes
Many experimental proposals for noisy intermediate scale quantum devices involve training
a parameterized quantum circuit with a classical optimization loop. Such hybrid quantum …
a parameterized quantum circuit with a classical optimization loop. Such hybrid quantum …
Quantum chemistry in the age of quantum computing
Practical challenges in simulating quantum systems on classical computers have been
widely recognized in the quantum physics and quantum chemistry communities over the …
widely recognized in the quantum physics and quantum chemistry communities over the …
Quantum computational chemistry
One of the most promising suggested applications of quantum computing is solving
classically intractable chemistry problems. This may help to answer unresolved questions …
classically intractable chemistry problems. This may help to answer unresolved questions …
Hartree-Fock on a superconducting qubit quantum computer
Google AI Quantum and Collaborators*†, F Arute… - Science, 2020 - science.org
The simulation of fermionic systems is among the most anticipated applications of quantum
computing. We performed several quantum simulations of chemistry with up to one dozen …
computing. We performed several quantum simulations of chemistry with up to one dozen …
Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum‐classical algorithms
Parameterized quantum circuits (PQCs) play an essential role in the performance of many
variational quantum algorithms. One challenge in implementing such algorithms is choosing …
variational quantum algorithms. One challenge in implementing such algorithms is choosing …
Theory of trotter error with commutator scaling
The Lie-Trotter formula, together with its higher-order generalizations, provides a direct
approach to decomposing the exponential of a sum of operators. Despite significant effort …
approach to decomposing the exponential of a sum of operators. Despite significant effort …
Quantum simulation and computing with Rydberg-interacting qubits
Arrays of optically trapped atoms excited to Rydberg states have recently emerged as a
competitive physical platform for quantum simulation and computing, where high-fidelity …
competitive physical platform for quantum simulation and computing, where high-fidelity …